Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
9秒前
EMMA发布了新的文献求助10
11秒前
HHW发布了新的文献求助10
13秒前
熊博士完成签到 ,获得积分10
14秒前
夜未央完成签到 ,获得积分10
15秒前
上官以山发布了新的文献求助10
17秒前
梅特卡夫完成签到,获得积分10
19秒前
静静在学呢完成签到,获得积分10
22秒前
22秒前
HHW完成签到,获得积分10
24秒前
加油杨完成签到 ,获得积分10
25秒前
111完成签到 ,获得积分10
25秒前
26秒前
AE86完成签到,获得积分10
28秒前
CC_Galaxy完成签到 ,获得积分10
28秒前
jeffrey完成签到,获得积分0
28秒前
郭帅完成签到,获得积分10
31秒前
香蕉海白发布了新的文献求助10
31秒前
看满天星河完成签到 ,获得积分10
33秒前
郑振哲完成签到 ,获得积分10
39秒前
笑林完成签到 ,获得积分10
40秒前
求知小生完成签到 ,获得积分10
42秒前
50秒前
52秒前
LiuZhaoYuan完成签到,获得积分10
56秒前
57秒前
杨一完成签到 ,获得积分0
58秒前
三木完成签到 ,获得积分10
58秒前
一米阳光发布了新的文献求助10
59秒前
舒心的雍发布了新的文献求助10
1分钟前
glanceofwind完成签到 ,获得积分10
1分钟前
我世界第一快应助EMMA采纳,获得20
1分钟前
典雅思真完成签到 ,获得积分10
1分钟前
Ziang发布了新的文献求助10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
舒心的雍完成签到,获得积分10
1分钟前
benlaron完成签到 ,获得积分10
1分钟前
贤惠的早晨完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866612
求助须知:如何正确求助?哪些是违规求助? 6424931
关于积分的说明 15654690
捐赠科研通 4981530
什么是DOI,文献DOI怎么找? 2686673
邀请新用户注册赠送积分活动 1629485
关于科研通互助平台的介绍 1587488