Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助稳重中心采纳,获得10
1秒前
1秒前
1秒前
2秒前
Bio应助科研通管家采纳,获得30
2秒前
细腻海蓝发布了新的文献求助10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
yxx应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
yar应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
张二狗完成签到,获得积分10
2秒前
zhugao完成签到,获得积分10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
Goodenough发布了新的文献求助10
2秒前
cruise应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
沉静小萱完成签到 ,获得积分10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
无奈行恶应助科研通管家采纳,获得20
3秒前
pluto应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
汉堡包应助静夜谧思采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得10
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
yar应助科研通管家采纳,获得10
3秒前
闪闪映易完成签到,获得积分10
3秒前
3秒前
好运来完成签到,获得积分10
3秒前
麦香鱼完成签到,获得积分10
4秒前
hu完成签到,获得积分10
5秒前
mmx发布了新的文献求助10
5秒前
shenzz发布了新的文献求助10
5秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582