Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦逼的医学生陳完成签到 ,获得积分10
刚刚
大喜子完成签到 ,获得积分10
1秒前
liwei完成签到 ,获得积分10
3秒前
8秒前
Lesterem完成签到 ,获得积分10
10秒前
blueblue发布了新的文献求助10
12秒前
感性的神级完成签到,获得积分10
15秒前
大呲花完成签到,获得积分10
19秒前
抹缇卡完成签到 ,获得积分10
20秒前
黎威完成签到,获得积分10
20秒前
小二郎应助blueblue采纳,获得30
22秒前
yzhilson完成签到 ,获得积分10
28秒前
TAO LEE完成签到 ,获得积分10
29秒前
roundtree完成签到 ,获得积分0
33秒前
34秒前
小小铱完成签到,获得积分10
37秒前
似水流年完成签到 ,获得积分10
42秒前
小文子完成签到 ,获得积分10
42秒前
blueblue完成签到,获得积分20
43秒前
乔杰完成签到 ,获得积分10
49秒前
Xie完成签到 ,获得积分10
49秒前
Zhao完成签到 ,获得积分10
52秒前
芝诺的乌龟完成签到 ,获得积分0
57秒前
珂珂完成签到 ,获得积分10
1分钟前
小星星完成签到,获得积分10
1分钟前
Leo完成签到 ,获得积分10
1分钟前
陈米花完成签到,获得积分10
1分钟前
yyjl31完成签到,获得积分10
1分钟前
Simon_chat完成签到,获得积分10
1分钟前
jianning完成签到,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
吐司炸弹完成签到,获得积分10
1分钟前
mayfly完成签到,获得积分10
1分钟前
小马甲应助科研通管家采纳,获得10
1分钟前
赵勇完成签到 ,获得积分10
1分钟前
整齐的惮完成签到 ,获得积分10
1分钟前
坚定凝旋完成签到 ,获得积分10
1分钟前
gl6542完成签到,获得积分10
1分钟前
xiubo128完成签到 ,获得积分10
1分钟前
wushuimei完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134020
求助须知:如何正确求助?哪些是违规求助? 2784845
关于积分的说明 7768808
捐赠科研通 2440236
什么是DOI,文献DOI怎么找? 1297340
科研通“疑难数据库(出版商)”最低求助积分说明 624925
版权声明 600792