亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
读研霹雳完成签到 ,获得积分10
7秒前
兔兔大王完成签到,获得积分10
19秒前
21秒前
兔兔大王发布了新的文献求助10
24秒前
Fuaget发布了新的文献求助10
26秒前
Fuaget完成签到,获得积分10
38秒前
ding应助XIUXIU采纳,获得10
2分钟前
2分钟前
小小宝发布了新的文献求助10
2分钟前
2分钟前
XIUXIU发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
4分钟前
濮阳灵竹完成签到,获得积分10
4分钟前
Linden_bd完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
科研通AI6应助XMH采纳,获得30
6分钟前
Gryff完成签到 ,获得积分10
6分钟前
breeze完成签到,获得积分10
6分钟前
Rn完成签到 ,获得积分10
6分钟前
稚久完成签到,获得积分20
7分钟前
CodeCraft应助科研通管家采纳,获得10
7分钟前
7分钟前
7分钟前
8分钟前
8分钟前
李小猫完成签到,获得积分10
8分钟前
zsmj23完成签到 ,获得积分0
8分钟前
李小猫发布了新的文献求助10
8分钟前
9分钟前
从容芮应助难过的踏歌采纳,获得30
9分钟前
稚久发布了新的文献求助10
9分钟前
李志全完成签到 ,获得积分10
10分钟前
10分钟前
10分钟前
量子星尘发布了新的文献求助10
10分钟前
AliEmbark完成签到,获得积分10
10分钟前
10分钟前
搞怪的白云完成签到 ,获得积分10
11分钟前
Zhaowx完成签到,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5245506
求助须知:如何正确求助?哪些是违规求助? 4410898
关于积分的说明 13728817
捐赠科研通 4281197
什么是DOI,文献DOI怎么找? 2349022
邀请新用户注册赠送积分活动 1346131
关于科研通互助平台的介绍 1304938