Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ken131完成签到 ,获得积分0
刚刚
ceeray23应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
ceeray23应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
呼吸第一口气的咽喉完成签到 ,获得积分10
3秒前
shouyu29完成签到,获得积分10
6秒前
唯美完成签到,获得积分10
11秒前
12秒前
Ikkyu完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
花痴的衬衫完成签到 ,获得积分10
16秒前
Rain完成签到,获得积分10
18秒前
看文献完成签到,获得积分10
21秒前
Baron完成签到,获得积分20
23秒前
Cris完成签到,获得积分10
27秒前
27秒前
77完成签到 ,获得积分10
28秒前
29秒前
somnus完成签到,获得积分10
30秒前
srandrs完成签到,获得积分10
30秒前
yutingemail完成签到 ,获得积分10
30秒前
如泣草芥完成签到,获得积分0
32秒前
zcydbttj2011完成签到 ,获得积分10
35秒前
天真的白凡完成签到 ,获得积分10
38秒前
38秒前
丑小鸭完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
41秒前
maple发布了新的文献求助10
43秒前
坦率雪枫完成签到 ,获得积分10
44秒前
FashionBoy应助391X小king采纳,获得10
44秒前
star完成签到,获得积分10
45秒前
alixy完成签到,获得积分10
47秒前
qiaorankongling完成签到 ,获得积分10
47秒前
科研王子完成签到 ,获得积分10
48秒前
简单幸福完成签到 ,获得积分0
48秒前
帅气的沧海完成签到 ,获得积分10
48秒前
1255475177完成签到 ,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651424
求助须知:如何正确求助?哪些是违规求助? 4784822
关于积分的说明 15053799
捐赠科研通 4810090
什么是DOI,文献DOI怎么找? 2572957
邀请新用户注册赠送积分活动 1528830
关于科研通互助平台的介绍 1487848