Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡的快乐完成签到,获得积分10
刚刚
肉脸小鱼完成签到 ,获得积分10
刚刚
刚刚
英姑应助愉快迎荷采纳,获得10
1秒前
暮光不ling完成签到,获得积分10
1秒前
阳光水壶发布了新的文献求助10
1秒前
mr完成签到 ,获得积分10
2秒前
2秒前
鲨鱼辣椒发布了新的文献求助10
2秒前
3秒前
科研通AI6应助十三采纳,获得10
4秒前
李健应助hah采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
阳光青烟发布了新的文献求助10
4秒前
4秒前
Wow完成签到,获得积分10
5秒前
默默完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
缓慢的凝安完成签到 ,获得积分10
6秒前
liu发布了新的文献求助10
7秒前
7秒前
鸣笛应助机灵的盼望采纳,获得10
7秒前
谢同学发布了新的文献求助10
7秒前
zhx发布了新的文献求助10
8秒前
NexusExplorer应助mia采纳,获得10
8秒前
8秒前
荣枫发布了新的文献求助10
8秒前
9秒前
超级的鞅发布了新的文献求助20
9秒前
小二郎应助小坨坨采纳,获得10
9秒前
10秒前
10秒前
着急的语海完成签到,获得积分10
10秒前
12秒前
sota完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403