清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ceeray23应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
ceeray23应助科研通管家采纳,获得10
1秒前
危机的慕卉完成签到 ,获得积分10
11秒前
sonicker完成签到 ,获得积分10
17秒前
qq完成签到 ,获得积分10
22秒前
拿铁小笼包完成签到,获得积分10
25秒前
jlwang完成签到,获得积分10
38秒前
jsnd完成签到 ,获得积分10
52秒前
lod完成签到,获得积分10
1分钟前
神勇的天问完成签到 ,获得积分10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助科研小菜鸟采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
JESI完成签到,获得积分10
2分钟前
sube完成签到 ,获得积分10
2分钟前
jesi完成签到,获得积分10
2分钟前
赵芳完成签到,获得积分10
3分钟前
Cassie关注了科研通微信公众号
3分钟前
vbnn完成签到 ,获得积分10
3分钟前
3分钟前
缓慢雨南发布了新的文献求助10
3分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
kgf完成签到 ,获得积分20
4分钟前
曹国庆完成签到 ,获得积分10
4分钟前
orixero应助ceeray23采纳,获得20
4分钟前
斯文败类应助ceeray23采纳,获得20
4分钟前
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685645
关于积分的说明 14838712
捐赠科研通 4672874
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965