Biomarker data with measurement error in medical research: A literature review

生物标志物 接收机工作特性 医学 疾病 观测误差 统计 生物标志物发现 肿瘤科 内科学 生物 数学 蛋白质组学 生物化学 基因
作者
Ching‐Yun Wang,Wen‐Han Hwang,Xiao Song
出处
期刊:Wiley Interdisciplinary Reviews: Computational Statistics [Wiley]
卷期号:16 (1)
标识
DOI:10.1002/wics.1641
摘要

Abstract A biomarker is a measurable indicator of the severity or presence of a disease or medical condition in biomedical or epidemiological research. Biomarkers may help in early diagnosis and prevention of diseases. Several biomarkers have been identified for many diseases such as carbohydrate antigen 19‐9 for pancreatic cancer. However, biomarkers may be measured with errors due to many reasons such as specimen collection or day‐to‐day within‐subject variability of the biomarker, among others. Measurement error in the biomarker leads to bias in the regression parameter estimation for the association of the biomarker with disease in epidemiological studies. In addition, measurement error in the biomarkers may affect standard diagnostic measures to evaluate the performance of biomarkers such as the receiver operating characteristic (ROC) curve, area under the ROC curve, sensitivity, and specificity. Measurement error may also have an effect on how to combine multiple cancer biomarkers as a composite predictor for disease diagnosis. In follow‐up studies, biomarkers are often collected intermittently at examination times, which may be sparse and typically biomarkers are not observed at the event times. Joint modeling of longitudinal and time‐to‐event data is a valid approach to account for measurement error in the analysis of repeatedly measured biomarkers and time‐to‐event outcomes. In this article, we provide a literature review on existing methods to correct for estimation in regression analysis, diagnostic measures, and joint modeling of longitudinal biomarkers and survival outcomes when the biomarkers are measured with errors. This article is categorized under: Statistical and Graphical Methods of Data Analysis > Robust Methods Statistical and Graphical Methods of Data Analysis > EM Algorithm Statistical Models > Survival Models

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
寻梦完成签到 ,获得积分10
刚刚
satori完成签到,获得积分10
刚刚
英姑应助BING采纳,获得10
1秒前
和谐代灵完成签到,获得积分10
2秒前
3秒前
3秒前
自觉雨文发布了新的文献求助10
3秒前
威武爆米花完成签到,获得积分10
3秒前
小太阳发布了新的文献求助10
4秒前
要减肥冰菱完成签到,获得积分10
4秒前
尚白swqd完成签到,获得积分20
4秒前
ziyue发布了新的文献求助10
4秒前
4秒前
吕嫣娆完成签到 ,获得积分10
4秒前
5秒前
混沌完成签到,获得积分10
5秒前
5秒前
赵小胖完成签到,获得积分10
5秒前
wfs完成签到,获得积分10
6秒前
友好聋五完成签到,获得积分10
6秒前
海城好人完成签到,获得积分10
6秒前
00gi完成签到,获得积分10
7秒前
7秒前
悦耳短靴完成签到 ,获得积分10
7秒前
7秒前
7秒前
车宇完成签到 ,获得积分10
7秒前
顾安完成签到 ,获得积分10
8秒前
8秒前
8秒前
机智向松完成签到,获得积分10
8秒前
9秒前
淡然听蓉发布了新的文献求助10
9秒前
深情安青应助乐观的菜汪采纳,获得10
9秒前
9秒前
ren关闭了ren文献求助
9秒前
量子星尘发布了新的文献求助10
9秒前
吉不得发布了新的文献求助10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699375
求助须知:如何正确求助?哪些是违规求助? 5130580
关于积分的说明 15225579
捐赠科研通 4854309
什么是DOI,文献DOI怎么找? 2604571
邀请新用户注册赠送积分活动 1556027
关于科研通互助平台的介绍 1514304