Sampling origins and directions affect the minimum sampling area in forest plots

物种丰富度 采样(信号处理) 植被(病理学) 抽样设计 生态学 系统抽样 物种多样性 地理 自然地理学 统计 生物 数学 人口 医学 人口学 滤波器(信号处理) 病理 社会学 计算机科学 计算机视觉
作者
C. Y. He,Fan Fan,Xiujuan Qiao,Zhang Zhou,Han Xu,Sheng Li,Jiangling Zhu,Shaopeng Wang,Zhiyao Tang,Jingyun Fang
出处
期刊:Journal of Vegetation Science [Wiley]
卷期号:35 (1) 被引量:1
标识
DOI:10.1111/jvs.13232
摘要

Abstract Questions The minimum sampling area (minimum area) is the smallest space that reflects species composition and characteristics of a plant community. The quantitative concept of minimum area is often estimated using species–area relationships (SARs) and has become the classical foundation for managing protected areas. However, sampling designs to determine the minimum area in different forest types have not been systematically evaluated. Location China. Methods We used tree census data from three forest dynamic plots, each with a size of 25–60 ha, in different climatic zones in China to determine the minimum areas of woody plants and to analyze the effects of species richness and topographic heterogeneity on the minimum areas by changing sampling origin and direction. Results We found that mainly sampling design affects the estimation of woody plant species richness and required minimum area in different forest types. The estimated size of the minimum areas required was several hectares and varied significantly with sampling origin and direction, and showed a difference of approximately 1.5–2 times in the forest plots. Topographic heterogeneity significantly affected the minimum area through changes in species composition. Conclusions Sampling origin and direction should be considered when using SARs to estimate the minimum area and species diversity in communities. Such a comprehensive approach of sampling can contribute to a better understanding of vegetation characteristics and the minimum area required for a conservation census in heterogeneous environments.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WuLujie发布了新的文献求助10
刚刚
不做Aspirin完成签到 ,获得积分10
刚刚
mylove应助morry5007采纳,获得10
1秒前
隐形曼青应助Aurora采纳,获得10
1秒前
从容问雁发布了新的文献求助10
1秒前
1秒前
woshiwuziq完成签到 ,获得积分10
1秒前
SciGPT应助健忘的自行车采纳,获得20
2秒前
QWE发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
我是老大应助白苹果采纳,获得10
4秒前
Jackxu发布了新的文献求助10
4秒前
4秒前
Linda发布了新的文献求助30
4秒前
liuttinn完成签到,获得积分10
4秒前
所所应助刘丰铭采纳,获得10
5秒前
5秒前
5秒前
5秒前
能干冰露发布了新的文献求助10
5秒前
脑洞疼应助王则华采纳,获得10
5秒前
Leon发布了新的文献求助20
7秒前
8秒前
8秒前
闫小天天完成签到,获得积分10
9秒前
ningmeng发布了新的文献求助10
9秒前
9秒前
科研通AI6应助白辉采纳,获得10
9秒前
承乐应助波风水门pxf采纳,获得10
9秒前
9秒前
何文完成签到,获得积分10
10秒前
10秒前
香蕉觅云应助Jackxu采纳,获得10
10秒前
共享精神应助Jinyang采纳,获得10
10秒前
我嘞个豆完成签到,获得积分10
10秒前
Te发布了新的文献求助10
11秒前
11秒前
酷波er应助Wulei采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836