A study on the impact of Generative Artificial Intelligence supported Situational Interactive Teaching on students’ ‘flow’ experience and learning effectiveness — a case study of legal education in China

情境伦理学 生成语法 晋升(国际象棋) 心理学 认知 教学方法 数学教育 计算机科学 人工智能 社会心理学 政治学 政治 神经科学 法学
作者
Songhua Shi,Jinkai Li,Rui Zhang
出处
期刊:Asia Pacific Journal of Education [Informa]
卷期号:44 (1): 112-138 被引量:9
标识
DOI:10.1080/02188791.2024.2305161
摘要

The rapid advancement of Generative Artificial Intelligence Technology has increasingly drawn attention to its potential applications in the educational sector. This study aims to investigate the effects of Situational Interactive Teaching, facilitated by generative artificial intelligence, on students' learning outcomes and flow experiences. A series of experiments were designed to compare the performance of a Generative Artificial Intelligence-supported Situational Interactive Teaching Method with a Traditional Video Interactive Teaching Method. Data was collected using research tools such as questionnaires and test questions to assess students' cognitive levels, learning effectiveness, flow experiences, and subjective evaluations during the instructional process. The analysis revealed distinct differences between the two teaching methods. The findings suggest that compared to traditional teaching methods, Generative Artificial Intelligence-supported Situational Interactive Teaching significantly improves students' learning outcomes in cognitive, skill, and affective domains, while also enhancing flow experiences. These positive effects are not limited by individual student differences, indicating broad applicability. Furthermore, this teaching approach can foster a positive feedback loop between learning effectiveness and flow experience. In conclusion, this study confirms the effective application of generative artificial intelligence technology in legal education, providing empirical evidence for the promotion of this innovative teaching model in the educational field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhang完成签到,获得积分10
1秒前
2秒前
思源应助soso1010采纳,获得10
3秒前
Jalen发布了新的文献求助10
4秒前
可乐完成签到,获得积分20
4秒前
1111发布了新的文献求助10
6秒前
6秒前
6秒前
ccc完成签到,获得积分10
7秒前
Ridley发布了新的文献求助10
7秒前
7秒前
7秒前
仲乔妹完成签到,获得积分10
9秒前
学术蝗虫完成签到,获得积分10
9秒前
七七发布了新的文献求助10
10秒前
风中虔纹完成签到,获得积分10
11秒前
luoluo发布了新的文献求助30
11秒前
老迟到的元霜完成签到,获得积分10
13秒前
13秒前
13秒前
搜集达人应助jk258采纳,获得10
15秒前
pluto应助cz采纳,获得10
15秒前
清梦完成签到,获得积分10
16秒前
彭于彦祖应助ly采纳,获得30
17秒前
甜蜜的蘑菇完成签到,获得积分20
17秒前
17秒前
huangsi完成签到,获得积分10
17秒前
感觉他香香的完成签到 ,获得积分20
17秒前
18秒前
qq完成签到,获得积分10
19秒前
别潜然发布了新的文献求助10
19秒前
20秒前
Jerome完成签到,获得积分10
20秒前
20秒前
luoluo完成签到,获得积分20
21秒前
Ao应助我是张铁柱·采纳,获得20
22秒前
madison发布了新的文献求助10
23秒前
lmf完成签到 ,获得积分10
23秒前
秦傲晴完成签到,获得积分10
23秒前
大卡司完成签到,获得积分10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304828
求助须知:如何正确求助?哪些是违规求助? 2938788
关于积分的说明 8489918
捐赠科研通 2613267
什么是DOI,文献DOI怎么找? 1427258
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557