Assessing vegetation resilience and vulnerability to drought events in Central Asia

脆弱性(计算) 植被(病理学) 弹性(材料科学) 自然地理学 环境科学 地理 地质学 气候学 水文学(农业) 计算机科学 医学 物理 计算机安全 岩土工程 病理 热力学
作者
Liangliang Jiang,Bing Liu,Hao Guo,Ye Yuan,Wenli Liu,Guli Jiapaer
出处
期刊:Journal of Hydrology [Elsevier]
卷期号:634: 131012-131012 被引量:33
标识
DOI:10.1016/j.jhydrol.2024.131012
摘要

Extreme drought events in Central Asia are becoming increasingly frequent, causing further harm to the vegetation in this region. It is essential to comprehend how vegetation continually responds to extreme drought events, focusing on both resistance and recovery aspects. To address this, based on the run theory, the study quantified drought characteristics for drought events affecting vegetation. Then, vegetation resistance and resilience to drought events were assessed by adopting a 'resistance–resilience' framework. Further analysis evaluated vegetation vulnerability to drought events by considering both vegetation resistance and resilience. The impact of different drought features on vegetation vulnerability to drought events was quantified using the boosted regression tree (BRT) model. The results showed that rainfed croplands in Northern Kazakhstan exhibited low resistance to drought events, while sparse vegetation in southern Central Asia displayed higher resistance compared to the other land covers. Moreover, natural vegetation demonstrated a longer resistance time compared to croplands. However, the opposite pattern was observed for vegetation resilience, with croplands and sparse vegetation showing high and low resilience, respectively. Sparse vegetation had a longer recovery time compared to croplands. Notably, the Amu Darya delta exhibited vegetation with low resistance and resilience. Furthermore, the study revealed that vegetation resilience in arid areas was more sensitive to dryness compared to humid areas. Regarding vegetation vulnerability to drought events, vegetation in southern region experienced low vulnerability. In contrast, croplands and grasslands around the Aral Sea showed high vulnerability. Most vegetation in the semi-arid zone was more susceptible to the negative impacts of drought events, particularly in croplands and grasslands, compared to other climate zones. The BRT model revealed that drought duration was found to be the primary factor influencing vegetation vulnerability to drought events, accounting for approximately 40% of the explanation in the model. The influences of drought duration on vegetation vulnerability intensified from forests (28.17%) to sparse vegetation (55.87%). The number of drought events contributed only approximately 5% of the explanation. With an understanding of vegetation resilience and vulnerability, policymakers and land managers can make informed decisions and implement measures to mitigate the negative effects of drought, protect fragile vegetation, and promote sustainable management practices in Central Asia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
刚刚
刚刚
陈景深完成签到,获得积分10
刚刚
刚刚
maomao201026完成签到 ,获得积分10
刚刚
打打应助宇月幸成采纳,获得10
1秒前
将将完成签到,获得积分20
1秒前
Jasper应助完美的皮卡丘采纳,获得10
1秒前
一进实验室就犯困完成签到,获得积分10
1秒前
文静修杰完成签到 ,获得积分10
1秒前
2秒前
anti1988发布了新的文献求助10
2秒前
李健的小迷弟应助Naomi采纳,获得10
2秒前
2秒前
小阳肖恩完成签到 ,获得积分10
3秒前
惜梦睡风发布了新的文献求助30
3秒前
小可可斯发布了新的文献求助10
3秒前
SciGPT应助董寄灵采纳,获得10
4秒前
4秒前
神勇书芹完成签到,获得积分10
4秒前
4秒前
天天快乐应助JZ2021采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
alunying发布了新的文献求助20
6秒前
称心的海完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
冷静灵竹发布了新的文献求助30
6秒前
7秒前
xxx完成签到 ,获得积分10
7秒前
鱼吃发布了新的文献求助10
7秒前
yaoyao发布了新的文献求助10
7秒前
8秒前
8秒前
搞笑5次完成签到,获得积分10
9秒前
9秒前
从容莫茗发布了新的文献求助10
10秒前
夏熠完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719773
求助须知:如何正确求助?哪些是违规求助? 5257547
关于积分的说明 15289528
捐赠科研通 4869516
什么是DOI,文献DOI怎么找? 2614832
邀请新用户注册赠送积分活动 1564816
关于科研通互助平台的介绍 1522006