已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CSAP-UNet: Convolution and self-attention paralleling network for medical image segmentation with edge enhancement

计算机科学 分割 人工智能 计算机视觉 图像分割 卷积神经网络 像素 特征(语言学) 模式识别(心理学) 语言学 哲学
作者
Xiaodong Fan,Jing Zhou,Xiaoli Jiang,Meizhuo Xin,Limin Hou
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:172: 108265-108265 被引量:10
标识
DOI:10.1016/j.compbiomed.2024.108265
摘要

Convolution operation is performed within a local window of the input image. Therefore, convolutional neural network (CNN) is skilled in obtaining local information. Meanwhile, the self-attention (SA) mechanism extracts features by calculating the correlation between tokens from all positions in the image, which has advantage in obtaining global information. Therefore, the two modules can complement each other to improve feature extraction ability. An effective fusion method is a problem worthy of further study. In this paper, we propose a CNN and SA paralleling network CSAP-UNet with U-Net as backbone. The encoder consists of two parallel branches of CNN and Transformer to extract the feature from the input image, which takes into account both the global dependencies and the local information. Because medical images come from certain frequency bands within the spectrum, their color channels are not as uniform as natural images. Meanwhile, medical segmentation pays more attention to lesion regions in the image. Attention fusion module (AFM) integrates channel attention and spatial attention in series to fuse the output features of the two branches. The medical image segmentation task is essentially to locate the boundary of the object in the image. The boundary enhancement module (BEM) is designed in the shallow layer of the proposed network to focus more specifically on pixel-level edge details. Experimental results on three public datasets validate that CSAP-UNet outperforms state-of-the-art networks, particularly on the ISIC 2017 dataset. The cross-dataset evaluation on Kvasir and CVC-ClinicDB shows that CSAP-UNet has strong generalization ability. Ablation experiments also indicate the effectiveness of the designed modules. The code for training and test is available at https://github.com/zhouzhou1201/CSAP-UNet.git.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助康阿蛋采纳,获得10
1秒前
JXY完成签到 ,获得积分10
2秒前
小佛爱学护理学完成签到,获得积分10
2秒前
清风发布了新的文献求助10
4秒前
HMR完成签到 ,获得积分10
5秒前
Alicia完成签到 ,获得积分10
6秒前
zhaojj发布了新的文献求助10
6秒前
7秒前
额123没名完成签到 ,获得积分10
15秒前
天下无敌完成签到 ,获得积分10
15秒前
yihui1113完成签到 ,获得积分10
16秒前
安生完成签到,获得积分10
22秒前
marco完成签到 ,获得积分10
23秒前
火火完成签到,获得积分10
23秒前
尼可刹米洛贝林完成签到,获得积分10
23秒前
24秒前
小白完成签到 ,获得积分10
25秒前
严珍珍完成签到 ,获得积分10
25秒前
英俊的铭应助123采纳,获得10
26秒前
CipherSage应助123采纳,获得10
28秒前
陈醋塔塔完成签到,获得积分10
30秒前
共享精神应助nicolesong0614采纳,获得10
31秒前
诸葛朝雪完成签到,获得积分10
32秒前
小马甲应助zhaojj采纳,获得10
32秒前
沉静一刀完成签到 ,获得积分10
33秒前
YY发布了新的文献求助10
33秒前
34秒前
36秒前
37秒前
炸鸡完成签到 ,获得积分10
37秒前
胡须完成签到,获得积分10
40秒前
40秒前
yrea完成签到,获得积分10
41秒前
123发布了新的文献求助10
42秒前
42秒前
43秒前
43秒前
43秒前
月亮奔我而来完成签到,获得积分10
44秒前
45秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162173
求助须知:如何正确求助?哪些是违规求助? 2813256
关于积分的说明 7899394
捐赠科研通 2472477
什么是DOI,文献DOI怎么找? 1316444
科研通“疑难数据库(出版商)”最低求助积分说明 631317
版权声明 602142