亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic Delineation of the 3D Left Atrium From LGE-MRI: Actor-Critic Based Detection and Semi-Supervised Segmentation

计算机科学 人工智能 分割 体素 正规化(语言学) 模式识别(心理学) 图像分割 深度学习 机器学习 计算机视觉
作者
Shun Xiang,Nana Li,Yuanquan Wang,Shoujun Zhou,Jin Wei,Shuo Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3545-3556 被引量:3
标识
DOI:10.1109/jbhi.2024.3373127
摘要

Accurate and automatic delineation of the left atrium (LA) is crucial for computer-aided diagnosis of atrial fibrillation-related diseases. However, effective model training typically requires a large amount of labeled data, which is time-consuming and labor-intensive. In this study, we propose a novel LA delineation framework. The region of LA is first detected using an actor-critic based deep reinforcement learning method with a shape-adaptive detection strategy using only box-level annotations, bypassing the need for voxel-level labeling. With the effectively detected LA, the impacts of class-imbalance and interference from surrounding tissues are significantly reduced. Subsequently, a semi-supervised segmentation scheme is coined to precisely delineate the contour of LA in 3D volume. The scheme integrates two independent networks with distinct structures, enabling implicit consistency regularization, capturing more spatial features, and avoiding the error accumulation present in current mainstream semi-supervised frameworks. Specifically, one network is combined with Transformer to capture latent spatial features, while the other network is based on pure CNN to capture local features. The difference prediction between these two sub-networks is exploited to mutually provide high-quality pseudo-labels and correct the cognitive bias. Experimental results on two public datasets demonstrate that our proposed strategy outperforms several state-of-the-art methods in terms of accuracy and clinical convenience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
禾禾禾完成签到 ,获得积分10
9秒前
12秒前
13秒前
14秒前
zzz发布了新的文献求助10
17秒前
zzz完成签到,获得积分10
22秒前
情怀应助谣谣采纳,获得10
25秒前
xxx完成签到,获得积分10
25秒前
chuzihang完成签到 ,获得积分10
25秒前
科研通AI6应助重重采纳,获得10
26秒前
烟花应助zzz采纳,获得30
28秒前
xiaohan,JIA完成签到,获得积分10
28秒前
朴素海亦完成签到 ,获得积分10
30秒前
33秒前
抚琴祛魅完成签到 ,获得积分10
36秒前
谣谣发布了新的文献求助10
36秒前
newplayer发布了新的文献求助10
37秒前
福斯卡完成签到 ,获得积分10
47秒前
47秒前
48秒前
52秒前
科目三应助那咋了采纳,获得10
54秒前
yunshui完成签到,获得积分10
55秒前
59秒前
纯属小白完成签到 ,获得积分10
1分钟前
林好事发布了新的文献求助10
1分钟前
1分钟前
纯属小白关注了科研通微信公众号
1分钟前
newplayer发布了新的文献求助10
1分钟前
1分钟前
大个应助冷酷的依霜采纳,获得10
1分钟前
zxcvbnm发布了新的文献求助20
1分钟前
壶壶壶完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
www完成签到,获得积分10
1分钟前
夜染完成签到,获得积分20
1分钟前
www发布了新的文献求助10
1分钟前
田様应助kinya采纳,获得10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463119
求助须知:如何正确求助?哪些是违规求助? 4567919
关于积分的说明 14311980
捐赠科研通 4493749
什么是DOI,文献DOI怎么找? 2461864
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426051