Automatic Delineation of the 3D Left Atrium From LGE-MRI: Actor-Critic Based Detection and Semi-Supervised Segmentation

计算机科学 人工智能 分割 体素 正规化(语言学) 模式识别(心理学) 图像分割 深度学习 机器学习 计算机视觉
作者
Shun Xiang,Nana Li,Yuanquan Wang,Shoujun Zhou,Jin Wei,Shuo Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3545-3556 被引量:3
标识
DOI:10.1109/jbhi.2024.3373127
摘要

Accurate and automatic delineation of the left atrium (LA) is crucial for computer-aided diagnosis of atrial fibrillation-related diseases. However, effective model training typically requires a large amount of labeled data, which is time-consuming and labor-intensive. In this study, we propose a novel LA delineation framework. The region of LA is first detected using an actor-critic based deep reinforcement learning method with a shape-adaptive detection strategy using only box-level annotations, bypassing the need for voxel-level labeling. With the effectively detected LA, the impacts of class-imbalance and interference from surrounding tissues are significantly reduced. Subsequently, a semi-supervised segmentation scheme is coined to precisely delineate the contour of LA in 3D volume. The scheme integrates two independent networks with distinct structures, enabling implicit consistency regularization, capturing more spatial features, and avoiding the error accumulation present in current mainstream semi-supervised frameworks. Specifically, one network is combined with Transformer to capture latent spatial features, while the other network is based on pure CNN to capture local features. The difference prediction between these two sub-networks is exploited to mutually provide high-quality pseudo-labels and correct the cognitive bias. Experimental results on two public datasets demonstrate that our proposed strategy outperforms several state-of-the-art methods in terms of accuracy and clinical convenience.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xiaxianong发布了新的文献求助10
刚刚
十七发布了新的文献求助10
刚刚
yu发布了新的文献求助10
1秒前
1秒前
1秒前
上官若男应助Bigweenine采纳,获得30
2秒前
Shaynin发布了新的文献求助10
2秒前
活力翠霜发布了新的文献求助10
2秒前
Dobronx03完成签到,获得积分10
3秒前
3秒前
王黎发布了新的文献求助10
4秒前
4秒前
盛事不朽完成签到 ,获得积分10
5秒前
5秒前
杨宁发布了新的文献求助10
5秒前
橙橙完成签到,获得积分10
5秒前
漂亮寻云完成签到 ,获得积分10
6秒前
谢亚飞发布了新的文献求助10
6秒前
无限寻雪完成签到 ,获得积分10
6秒前
科研通AI2S应助温柔寄文采纳,获得10
7秒前
爱吃冬瓜发布了新的文献求助10
7秒前
有机合成发布了新的文献求助10
7秒前
鱼跃发布了新的文献求助10
8秒前
CipherSage应助动听的笑南采纳,获得10
8秒前
复杂的新柔完成签到 ,获得积分10
8秒前
文艺白柏完成签到 ,获得积分10
9秒前
Joey驳回了嗯哼应助
9秒前
科研通AI2S应助仁爱发卡采纳,获得10
9秒前
9秒前
YTY完成签到,获得积分10
10秒前
心斋发布了新的文献求助10
11秒前
11秒前
Ning发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
12秒前
13秒前
13秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3169616
求助须知:如何正确求助?哪些是违规求助? 2820792
关于积分的说明 7932194
捐赠科研通 2481126
什么是DOI,文献DOI怎么找? 1321678
科研通“疑难数据库(出版商)”最低求助积分说明 633317
版权声明 602541