Developments in food neonicotinoids detection: novel recognition strategies, advanced chemical sensing techniques, and recent applications

拟除虫菊酯 新烟碱 杀虫剂 分子印迹聚合物 分子识别 适体 农药残留 化学通讯 生化工程 环境科学 生物技术 化学传感器 计算机科学 食品安全 食品 农药 毒理
作者
Xinru Yu,Hongbin Pu,Da‐Wen Sun
出处
期刊:Critical Reviews in Food Science and Nutrition [Informa]
卷期号:65 (7): 1216-1234 被引量:11
标识
DOI:10.1080/10408398.2023.2290698
摘要

Neonicotinoid insecticides (NEOs) are a new class of neurotoxic pesticides primarily used for pest control on fruits and vegetables, cereals, and other crops after organophosphorus pesticides (OPPs), carbamate pesticides (CBPs), and pyrethroid pesticides. However, chronic abuse and illegal use have led to the contamination of food and water sources as well as damage to ecological and environmental systems. Long-term exposure to NEOs may pose potential risks to animals (especially bees) and even human health. Consequently, it is necessary to develop effective, robust, and rapid methods for NEOs detection. Specific recognition-based chemical sensing has been regarded as one of the most promising detection tools for NEOs due to their excellent selectivity, sensitivity, and robust interference resistance. In this review, we introduce the novel recognition strategies-enabled chemical sensing in food neonicotinoids detection in the past years (2017-2023). The properties and advantages of molecular imprinting recognition (MIR), host-guest recognition (HGR), electron-catalyzed recognition (ECR), immune recognition (IR), aptamer recognition (AR), and enzyme inhibition recognition (EIR) in the development of NEOs sensing platforms are discussed in detail. Recent applications of chemical sensing platforms in various food products, including fruits and vegetables, cereals, teas, honey, aquatic products, and others are highlighted. In addition, the future trends of applying chemical sensing with specific recognition strategies for NEOs analysis are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
拉长的紫安完成签到,获得积分10
1秒前
cfyoung完成签到,获得积分10
1秒前
GuangqinMa发布了新的文献求助10
2秒前
3秒前
niNe3YUE应助会化蝶采纳,获得10
3秒前
橙子雨发布了新的文献求助10
5秒前
7秒前
7秒前
科研通AI6应助冷酷严青采纳,获得10
7秒前
7秒前
dzdzzzzzzzzzz完成签到,获得积分10
9秒前
加油少年发布了新的文献求助10
11秒前
11秒前
12秒前
Hello应助缓慢含烟采纳,获得10
12秒前
浮游应助宇文天思采纳,获得10
14秒前
研友_LweedZ发布了新的文献求助10
15秒前
Jasper应助学术混子采纳,获得10
15秒前
QQW完成签到 ,获得积分10
16秒前
16秒前
好的好的发布了新的文献求助10
16秒前
17秒前
深情安青应助dzdzzzzzzzzzz采纳,获得10
18秒前
无花果应助粒粒采纳,获得20
18秒前
zhouyunan完成签到,获得积分10
20秒前
21秒前
22秒前
缓慢含烟发布了新的文献求助10
22秒前
薄荷完成签到 ,获得积分10
25秒前
缓慢含烟完成签到,获得积分10
27秒前
爆米花应助我要吃鱼采纳,获得10
27秒前
好的好的完成签到 ,获得积分20
29秒前
seeyou完成签到 ,获得积分10
31秒前
顾矜应助加油少年采纳,获得10
32秒前
眼睛大花生完成签到,获得积分10
34秒前
34秒前
陈勇杰发布了新的文献求助10
36秒前
跳跃小伙完成签到 ,获得积分10
36秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454