Basin-wide tracking of nitrate cycling in Yangtze River through dual isotope and machine learning

硝酸盐 环境科学 水文学(农业) 流域 构造盆地 人口 水质 生态学 地理 地质学 地图学 生物 古生物学 人口学 岩土工程 社会学
作者
Fazhi Xie,Gege Cai,Guolian Li,Haibin Li,Xing Chen,Yun Liu,Wei Zhang,Jiamei Zhang,Xiaoli Zhao,Zhi Tang
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:912: 169656-169656
标识
DOI:10.1016/j.scitotenv.2023.169656
摘要

The nitrate (NO3-) input has adversely affected the water quality and ecological function in the whole basin of the Yangtze River. The protection of water sources and implementation of "great protection of Yangtze River" policy require large-scale information on water contamination. In this study, dual isotope and Bayesian mixing model were used to research the transformation and sources of nitrate. Chemical fertilizers contribute 76 % of the nitrate sources in the upstream, while chemical fertilizers were also dominant in the midstream (39 %) and downstream (39 %) of Yangtze River. In addition, nitrification process occurred in the whole basin. Four machine learning models were used to relate nitrate concentrations to explanatory variables describing influence factors to predict nitrate concentrations in the whole basin of Yangtze River. The anthropogenic and natural factors, such as rainfall, GDP and population were chosen to take as predictor variables. The eXtreme Gradient Boosting (XGBoost) model for nitrate has a better predictive performance with an R2 of 0.74. The predictive models of nitrate concentrations will help identify the nitrate distribution and transport in the whole Yangtze River basin. Overall, this study represents the first basin-wide data-driven assessment of the nitrate cycling in the Yangtze River basin.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luna_aaa应助yang135采纳,获得10
1秒前
忧郁小刺猬完成签到,获得积分10
1秒前
4秒前
LIBINWANG完成签到,获得积分10
5秒前
6秒前
老虎完成签到,获得积分10
7秒前
苹果夜梦完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
NexusExplorer应助不安冰棍采纳,获得10
10秒前
竹本完成签到 ,获得积分10
11秒前
Dio完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
田様应助MGzsss采纳,获得10
14秒前
14秒前
思源应助你好采纳,获得10
14秒前
14秒前
15秒前
Daiys完成签到,获得积分10
16秒前
蓝天应助彩虹捕手采纳,获得10
17秒前
xiaofeidiao完成签到,获得积分10
17秒前
尔蝶完成签到 ,获得积分10
18秒前
ZZL发布了新的文献求助10
18秒前
搬砖发布了新的文献求助10
19秒前
20秒前
嗯哼完成签到 ,获得积分10
21秒前
Akim应助涯123采纳,获得10
22秒前
22秒前
高贵秋柳发布了新的文献求助10
23秒前
24秒前
英勇的若灵完成签到 ,获得积分10
24秒前
24秒前
专注雁卉发布了新的文献求助10
25秒前
MGzsss发布了新的文献求助10
25秒前
27秒前
薏_发布了新的文献求助10
27秒前
yznfly应助Tail采纳,获得20
27秒前
你好发布了新的文献求助10
28秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633567
求助须知:如何正确求助?哪些是违规求助? 4729249
关于积分的说明 14986268
捐赠科研通 4791473
什么是DOI,文献DOI怎么找? 2558931
邀请新用户注册赠送积分活动 1519330
关于科研通互助平台的介绍 1479617