硝酸盐
环境科学
水文学(农业)
流域
构造盆地
人口
水质
生态学
地理
地质学
地图学
生物
古生物学
人口学
岩土工程
社会学
作者
Fazhi Xie,Gege Cai,Guolian Li,Haibin Li,Xing Chen,Yun Liu,Wei Zhang,Jiamei Zhang,Xiaoli Zhao,Zhi Tang
标识
DOI:10.1016/j.scitotenv.2023.169656
摘要
The nitrate (NO3-) input has adversely affected the water quality and ecological function in the whole basin of the Yangtze River. The protection of water sources and implementation of "great protection of Yangtze River" policy require large-scale information on water contamination. In this study, dual isotope and Bayesian mixing model were used to research the transformation and sources of nitrate. Chemical fertilizers contribute 76 % of the nitrate sources in the upstream, while chemical fertilizers were also dominant in the midstream (39 %) and downstream (39 %) of Yangtze River. In addition, nitrification process occurred in the whole basin. Four machine learning models were used to relate nitrate concentrations to explanatory variables describing influence factors to predict nitrate concentrations in the whole basin of Yangtze River. The anthropogenic and natural factors, such as rainfall, GDP and population were chosen to take as predictor variables. The eXtreme Gradient Boosting (XGBoost) model for nitrate has a better predictive performance with an R2 of 0.74. The predictive models of nitrate concentrations will help identify the nitrate distribution and transport in the whole Yangtze River basin. Overall, this study represents the first basin-wide data-driven assessment of the nitrate cycling in the Yangtze River basin.
科研通智能强力驱动
Strongly Powered by AbleSci AI