Multi-UAV roundup strategy method based on deep reinforcement learning CEL-MADDPG algorithm

强化学习 计算机科学 任务(项目管理) 舍入 一般化 趋同(经济学) 人工智能 跟踪(教育) 算法 机器学习 数学 工程类 心理学 数学分析 教育学 系统工程 经济 经济增长 操作系统
作者
Bo Li,Jianmei Wang,Chao Song,Zhipeng Yang,Kaifang Wan,Qingfu Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123018-123018 被引量:5
标识
DOI:10.1016/j.eswa.2023.123018
摘要

Due to the complexity of the multi-UAV rounding up maneuvering target task in continuous and complex environments, it is difficult for the UAVs to quickly and accurately capture maneuvering targets. Therefore, this paper proposes CEL-MADDPG algorithm based on Curriculum Experience Learning. It improves the efficiency of multi-UAVs rounding up maneuvering target, and has certain generalization. which is better applied to the multi-UAV roundup task in complex dynamic environments. The main contributions are the following two: By introducing the Curriculum Experience Learning, the multi-UAV rounding up task is divided into target tracking, encircling transition, and shrinking capture to learn, and designed corresponding reward function according to the task characteristics of each subtask. Which improves the learning efficiency of the model. Additionally, the CEL-MADDPG adopts the Preferential Experience Replay strategy to select experiences that are conducive to accelerating network convergence, and the experience most similar to the current state is further selected as a learning sample by using Relative Experience Learning (REL). This improves the sampling efficiency of samples and the training and optimization efficiency of the model. Simulation experiments show that the CEL-MADDPG algorithm can effectively improve the training efficiency of the model and has higher task completion efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
花花完成签到 ,获得积分10
2秒前
沉默的小天鹅应助耀阳采纳,获得10
2秒前
lilila666完成签到,获得积分10
2秒前
4秒前
5秒前
5秒前
lilila666发布了新的文献求助10
7秒前
艺术家脾气完成签到,获得积分10
7秒前
丘比特应助qqq采纳,获得10
9秒前
11秒前
crazy发布了新的文献求助10
12秒前
Wayne72完成签到,获得积分0
17秒前
阿飞发布了新的文献求助10
17秒前
Zoki完成签到,获得积分10
18秒前
mini发布了新的文献求助10
19秒前
20秒前
烟雨完成签到,获得积分10
22秒前
彭栋应助文献采纳,获得30
22秒前
祖国小红花完成签到,获得积分20
22秒前
fighting完成签到 ,获得积分10
23秒前
来我家喝桂花茶完成签到,获得积分10
28秒前
28秒前
852应助一方通行采纳,获得10
28秒前
29秒前
29秒前
量子星尘发布了新的文献求助10
30秒前
而为完成签到,获得积分10
30秒前
gege完成签到,获得积分10
31秒前
31秒前
31秒前
32秒前
Orange应助xueyu采纳,获得10
32秒前
深情安青应助13771590815采纳,获得10
33秒前
燃燃发布了新的文献求助10
33秒前
星星发布了新的文献求助10
33秒前
33秒前
冷傲的夕阳完成签到,获得积分20
33秒前
大模型应助JJ采纳,获得10
35秒前
大黄发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989378
求助须知:如何正确求助?哪些是违规求助? 3531442
关于积分的说明 11254002
捐赠科研通 3270126
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173