Multi-UAV roundup strategy method based on deep reinforcement learning CEL-MADDPG algorithm

强化学习 计算机科学 任务(项目管理) 舍入 一般化 趋同(经济学) 人工智能 跟踪(教育) 算法 机器学习 数学 工程类 心理学 数学分析 教育学 系统工程 经济 经济增长 操作系统
作者
Bo Li,Jianmei Wang,Chao Song,Zhipeng Yang,Kaifang Wan,Qingfu Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:245: 123018-123018 被引量:4
标识
DOI:10.1016/j.eswa.2023.123018
摘要

Due to the complexity of the multi-UAV rounding up maneuvering target task in continuous and complex environments, it is difficult for the UAVs to quickly and accurately capture maneuvering targets. Therefore, this paper proposes CEL-MADDPG algorithm based on Curriculum Experience Learning. It improves the efficiency of multi-UAVs rounding up maneuvering target, and has certain generalization. which is better applied to the multi-UAV roundup task in complex dynamic environments. The main contributions are the following two: By introducing the Curriculum Experience Learning, the multi-UAV rounding up task is divided into target tracking, encircling transition, and shrinking capture to learn, and designed corresponding reward function according to the task characteristics of each subtask. Which improves the learning efficiency of the model. Additionally, the CEL-MADDPG adopts the Preferential Experience Replay strategy to select experiences that are conducive to accelerating network convergence, and the experience most similar to the current state is further selected as a learning sample by using Relative Experience Learning (REL). This improves the sampling efficiency of samples and the training and optimization efficiency of the model. Simulation experiments show that the CEL-MADDPG algorithm can effectively improve the training efficiency of the model and has higher task completion efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王京完成签到,获得积分10
刚刚
赘婿应助小迷鹿采纳,获得10
1秒前
山山而川发布了新的文献求助10
1秒前
我行我素完成签到,获得积分20
1秒前
脑洞疼应助xx采纳,获得10
2秒前
听话的大碗完成签到 ,获得积分10
2秒前
mhl11应助flora采纳,获得20
3秒前
3秒前
茜你亦首歌完成签到 ,获得积分10
5秒前
zzzz完成签到 ,获得积分10
7秒前
8秒前
10秒前
剑舞人间发布了新的文献求助10
11秒前
cynic关注了科研通微信公众号
11秒前
13秒前
嗯哼应助李恩乐采纳,获得20
13秒前
拼搏凝蕊发布了新的文献求助30
13秒前
氼氼完成签到,获得积分10
14秒前
xx完成签到,获得积分10
14秒前
14秒前
大桃完成签到,获得积分10
15秒前
852应助刘家翔采纳,获得10
15秒前
taku完成签到 ,获得积分10
16秒前
17秒前
忧郁小刺猬完成签到,获得积分10
18秒前
Mr咸蛋黄完成签到,获得积分10
20秒前
研友_ngJQzL完成签到,获得积分10
20秒前
22秒前
情怀应助鼓励男孩采纳,获得10
22秒前
endmarki应助优雅的纸鹤采纳,获得20
23秒前
wanci应助华华采纳,获得10
24秒前
25秒前
27秒前
SANDY完成签到,获得积分10
28秒前
kongxiangjiu应助chan采纳,获得20
28秒前
28秒前
杳鸢应助_呱_采纳,获得200
29秒前
冷静的薯片完成签到 ,获得积分10
29秒前
可爱的函函应助YXH采纳,获得10
29秒前
29秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264114
求助须知:如何正确求助?哪些是违规求助? 2904308
关于积分的说明 8329600
捐赠科研通 2574523
什么是DOI,文献DOI怎么找? 1399150
科研通“疑难数据库(出版商)”最低求助积分说明 654443
邀请新用户注册赠送积分活动 633111