Multi-UAV roundup strategy method based on deep reinforcement learning CEL-MADDPG algorithm

强化学习 计算机科学 任务(项目管理) 舍入 一般化 趋同(经济学) 人工智能 跟踪(教育) 算法 机器学习 数学 工程类 心理学 数学分析 教育学 系统工程 经济 经济增长 操作系统
作者
Bo Li,Jianmei Wang,Chao Song,Zhipeng Yang,Kaifang Wan,Qingfu Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:245: 123018-123018 被引量:9
标识
DOI:10.1016/j.eswa.2023.123018
摘要

Due to the complexity of the multi-UAV rounding up maneuvering target task in continuous and complex environments, it is difficult for the UAVs to quickly and accurately capture maneuvering targets. Therefore, this paper proposes CEL-MADDPG algorithm based on Curriculum Experience Learning. It improves the efficiency of multi-UAVs rounding up maneuvering target, and has certain generalization. which is better applied to the multi-UAV roundup task in complex dynamic environments. The main contributions are the following two: By introducing the Curriculum Experience Learning, the multi-UAV rounding up task is divided into target tracking, encircling transition, and shrinking capture to learn, and designed corresponding reward function according to the task characteristics of each subtask. Which improves the learning efficiency of the model. Additionally, the CEL-MADDPG adopts the Preferential Experience Replay strategy to select experiences that are conducive to accelerating network convergence, and the experience most similar to the current state is further selected as a learning sample by using Relative Experience Learning (REL). This improves the sampling efficiency of samples and the training and optimization efficiency of the model. Simulation experiments show that the CEL-MADDPG algorithm can effectively improve the training efficiency of the model and has higher task completion efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zcm1999完成签到 ,获得积分10
刚刚
长风完成签到 ,获得积分10
刚刚
虞无声发布了新的文献求助10
1秒前
3秒前
奋斗的妙海完成签到 ,获得积分10
4秒前
HHEHK完成签到 ,获得积分10
6秒前
胡晓龙发布了新的文献求助10
6秒前
新的旅程完成签到,获得积分10
8秒前
完犊子发布了新的文献求助10
9秒前
木康薛完成签到,获得积分10
10秒前
地德兴完成签到 ,获得积分10
10秒前
11秒前
339564965完成签到,获得积分10
12秒前
安静严青完成签到 ,获得积分10
12秒前
13秒前
柏林寒冬应助完犊子采纳,获得10
14秒前
ccc完成签到,获得积分10
14秒前
TianFuAI完成签到,获得积分10
15秒前
chee完成签到,获得积分10
16秒前
研友_ZA2B68完成签到,获得积分0
16秒前
inu1255完成签到,获得积分0
16秒前
只想顺利毕业的科研狗完成签到,获得积分10
17秒前
普鲁卡因发布了新的文献求助10
18秒前
Helios完成签到,获得积分10
19秒前
xueshidaheng完成签到,获得积分0
19秒前
BK_201完成签到,获得积分10
19秒前
风信子完成签到,获得积分10
20秒前
abiorz完成签到,获得积分0
20秒前
窗外是蔚蓝色完成签到,获得积分0
21秒前
nanostu完成签到,获得积分10
23秒前
吐司炸弹完成签到,获得积分10
23秒前
mayfly完成签到,获得积分10
24秒前
Brief完成签到,获得积分10
24秒前
大模型应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
Amikacin完成签到,获得积分10
25秒前
鹏举瞰冷雨完成签到,获得积分10
25秒前
整齐的惮完成签到 ,获得积分10
26秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038112
求助须知:如何正确求助?哪些是违规求助? 3575788
关于积分的说明 11373801
捐赠科研通 3305604
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022