DAUnet: A U-shaped network combining deep supervision and attention for brain tumor segmentation

增采样 人工智能 计算机科学 分割 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 卷积(计算机科学) 计算机视觉 瓶颈 图像(数学) 人工神经网络 数学 哲学 语言学 几何学 嵌入式系统
作者
Feng Yan,Yuan Cao,Dianlong An,Panpan Liu,Xingyu Liao,Bin Yu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111348-111348 被引量:35
标识
DOI:10.1016/j.knosys.2023.111348
摘要

In MRI images, the brain tumor area varies greatly between individuals, and only relying on the judgment of clinicians is prone to misdiagnosis and misjudgment. Consequently, utilizing computer-aided diagnosis is of utmost significance in assisting clinicians with delineating the tumor region. Brain tumor MRI images are 3D images, and traditional segmentation methods tend to lose key information. Therefore, this paper proposes DAUnet, a U-shaped network for brain tumor MRI image segmentation combining deep supervision and convolutional attention. First, a module consisting of a Bottleneck module and attention (BA) module is designed. Here the attention not only uses spatial and channel (SC) attention but also adds residual connection, which is called 3D SC attention. Second, to enlarge the feature map receptive field without changing its resolution, a module consists of standard convolution and atrous spatial pyramid (CASP) module is designed. The feature map information is adjusted by standard convolution, subsequently, the feature map is provided as input to the ASP module. The CASP module fuses the features extracted by downsampling and performs upsampling operation, which strengthens the correlation between different layers of the network. Finally, using deep supervision as an auxiliary branch of the U-shaped network, it combines deep learning and regularization techniques to supervise the model during training, automatically finer parameters, and make the model fit better. Through experiments on BraTS 2020 and FeTS 2021 and comparison with other advanced methods, it has been demonstrated that DAUnet achieves precise segmentation of tumor regions in brain MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhao完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
追寻依风发布了新的文献求助10
1秒前
qwp发布了新的文献求助10
1秒前
看看发布了新的文献求助10
2秒前
2秒前
眯眯眼的裙子完成签到,获得积分10
4秒前
Lucia完成签到 ,获得积分10
4秒前
大盆完成签到,获得积分10
4秒前
开朗醉波发布了新的文献求助10
5秒前
5秒前
泡菜鱼oo完成签到,获得积分20
6秒前
6秒前
Muddle完成签到,获得积分10
6秒前
wacfpp完成签到,获得积分10
6秒前
7秒前
cindy发布了新的文献求助10
7秒前
1234发布了新的文献求助10
7秒前
疯大仙外向太清完成签到,获得积分10
7秒前
浮泷完成签到,获得积分10
9秒前
9秒前
英姑应助赵小美采纳,获得10
9秒前
9秒前
Muddle发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
柠檬不萌完成签到,获得积分10
10秒前
D追完成签到,获得积分20
10秒前
鱼王木木完成签到,获得积分10
11秒前
11秒前
完美世界应助519采纳,获得10
11秒前
angelinazh发布了新的文献求助10
12秒前
12秒前
12秒前
苍竹士子完成签到,获得积分20
12秒前
13秒前
13秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933