DAUnet: A U-shaped network combining deep supervision and attention for brain tumor segmentation

增采样 人工智能 计算机科学 分割 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 卷积(计算机科学) 计算机视觉 瓶颈 图像(数学) 人工神经网络 数学 哲学 语言学 几何学 嵌入式系统
作者
Feng Yan,Yuan Cao,Dianlong An,Panpan Liu,Xingyu Liao,Bin Yu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:285: 111348-111348 被引量:22
标识
DOI:10.1016/j.knosys.2023.111348
摘要

In MRI images, the brain tumor area varies greatly between individuals, and only relying on the judgment of clinicians is prone to misdiagnosis and misjudgment. Consequently, utilizing computer-aided diagnosis is of utmost significance in assisting clinicians with delineating the tumor region. Brain tumor MRI images are 3D images, and traditional segmentation methods tend to lose key information. Therefore, this paper proposes DAUnet, a U-shaped network for brain tumor MRI image segmentation combining deep supervision and convolutional attention. First, a module consisting of a Bottleneck module and attention (BA) module is designed. Here the attention not only uses spatial and channel (SC) attention but also adds residual connection, which is called 3D SC attention. Second, to enlarge the feature map receptive field without changing its resolution, a module consists of standard convolution and atrous spatial pyramid (CASP) module is designed. The feature map information is adjusted by standard convolution, subsequently, the feature map is provided as input to the ASP module. The CASP module fuses the features extracted by downsampling and performs upsampling operation, which strengthens the correlation between different layers of the network. Finally, using deep supervision as an auxiliary branch of the U-shaped network, it combines deep learning and regularization techniques to supervise the model during training, automatically finer parameters, and make the model fit better. Through experiments on BraTS 2020 and FeTS 2021 and comparison with other advanced methods, it has been demonstrated that DAUnet achieves precise segmentation of tumor regions in brain MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
阴暗的爬行关注了科研通微信公众号
2秒前
Tangviva1988发布了新的文献求助10
2秒前
木卯子发布了新的文献求助10
3秒前
充电宝应助dicpaccn采纳,获得10
3秒前
拿铁卢发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
6秒前
6秒前
xi完成签到,获得积分10
6秒前
8秒前
bobo完成签到,获得积分10
8秒前
8秒前
Dr_Zhang发布了新的文献求助30
9秒前
dream发布了新的文献求助10
10秒前
Yunis发布了新的文献求助10
10秒前
bobo发布了新的文献求助10
11秒前
木卯子完成签到,获得积分10
11秒前
12秒前
12秒前
陈大胖发布了新的文献求助10
12秒前
13秒前
科研通AI5应助韩菲菲采纳,获得10
13秒前
13秒前
14秒前
迷人的芹菜完成签到,获得积分10
14秒前
16秒前
111发布了新的文献求助10
17秒前
猪猪hero应助北辰采纳,获得10
17秒前
元元369发布了新的文献求助20
19秒前
柒柒牧马发布了新的文献求助10
20秒前
xiaoting完成签到,获得积分10
21秒前
眯眯眼的惋庭完成签到,获得积分10
22秒前
陈大胖完成签到,获得积分20
22秒前
快乐小狗完成签到,获得积分10
25秒前
口腔小废物完成签到 ,获得积分10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144