DAUnet: A U-shaped network combining deep supervision and attention for brain tumor segmentation

增采样 人工智能 计算机科学 分割 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 卷积(计算机科学) 计算机视觉 瓶颈 图像(数学) 人工神经网络 数学 哲学 语言学 几何学 嵌入式系统
作者
Feng Yan,Yuan Cao,Dianlong An,Panpan Liu,Xingyu Liao,Bin Yu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111348-111348 被引量:35
标识
DOI:10.1016/j.knosys.2023.111348
摘要

In MRI images, the brain tumor area varies greatly between individuals, and only relying on the judgment of clinicians is prone to misdiagnosis and misjudgment. Consequently, utilizing computer-aided diagnosis is of utmost significance in assisting clinicians with delineating the tumor region. Brain tumor MRI images are 3D images, and traditional segmentation methods tend to lose key information. Therefore, this paper proposes DAUnet, a U-shaped network for brain tumor MRI image segmentation combining deep supervision and convolutional attention. First, a module consisting of a Bottleneck module and attention (BA) module is designed. Here the attention not only uses spatial and channel (SC) attention but also adds residual connection, which is called 3D SC attention. Second, to enlarge the feature map receptive field without changing its resolution, a module consists of standard convolution and atrous spatial pyramid (CASP) module is designed. The feature map information is adjusted by standard convolution, subsequently, the feature map is provided as input to the ASP module. The CASP module fuses the features extracted by downsampling and performs upsampling operation, which strengthens the correlation between different layers of the network. Finally, using deep supervision as an auxiliary branch of the U-shaped network, it combines deep learning and regularization techniques to supervise the model during training, automatically finer parameters, and make the model fit better. Through experiments on BraTS 2020 and FeTS 2021 and comparison with other advanced methods, it has been demonstrated that DAUnet achieves precise segmentation of tumor regions in brain MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阅遍SCI完成签到,获得积分10
1秒前
英勇的战斗机完成签到,获得积分10
1秒前
秋不苏完成签到 ,获得积分10
1秒前
卿卿完成签到,获得积分20
1秒前
1秒前
2秒前
wuxunxun2015发布了新的文献求助10
3秒前
乐观小蕊发布了新的文献求助10
4秒前
brookqu完成签到,获得积分10
4秒前
Wu发布了新的文献求助10
4秒前
5秒前
陈美宏发布了新的文献求助10
7秒前
LY发布了新的文献求助10
7秒前
枳实发布了新的文献求助10
7秒前
7秒前
9秒前
PORCO完成签到,获得积分10
10秒前
文静雨安完成签到,获得积分10
11秒前
12秒前
小二郎应助卿卿采纳,获得10
12秒前
kxy0311发布了新的文献求助10
12秒前
共享精神应助小黄的主人采纳,获得10
12秒前
13秒前
醉熏的老师完成签到,获得积分10
13秒前
笨笨的外套完成签到,获得积分10
14秒前
15秒前
简简单单完成签到,获得积分10
17秒前
领导范儿应助li采纳,获得10
17秒前
刘蕊发布了新的文献求助10
17秒前
okkkk完成签到,获得积分10
17秒前
muzi发布了新的文献求助10
18秒前
19秒前
好好学习完成签到 ,获得积分10
19秒前
19秒前
19秒前
20秒前
21秒前
怡宝完成签到 ,获得积分10
21秒前
21秒前
orixero应助阳子采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598832
求助须知:如何正确求助?哪些是违规求助? 4684218
关于积分的说明 14834289
捐赠科研通 4664987
什么是DOI,文献DOI怎么找? 2537445
邀请新用户注册赠送积分活动 1504928
关于科研通互助平台的介绍 1470655