DAUnet: A U-shaped network combining deep supervision and attention for brain tumor segmentation

增采样 人工智能 计算机科学 分割 深度学习 特征(语言学) 棱锥(几何) 模式识别(心理学) 卷积(计算机科学) 计算机视觉 瓶颈 图像(数学) 人工神经网络 数学 哲学 嵌入式系统 语言学 几何学
作者
Feng Yan,Yuan Cao,Dianlong An,Panpan Liu,Xingyu Liao,Bin Yu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:285: 111348-111348 被引量:12
标识
DOI:10.1016/j.knosys.2023.111348
摘要

In MRI images, the brain tumor area varies greatly between individuals, and only relying on the judgment of clinicians is prone to misdiagnosis and misjudgment. Consequently, utilizing computer-aided diagnosis is of utmost significance in assisting clinicians with delineating the tumor region. Brain tumor MRI images are 3D images, and traditional segmentation methods tend to lose key information. Therefore, this paper proposes DAUnet, a U-shaped network for brain tumor MRI image segmentation combining deep supervision and convolutional attention. First, a module consisting of a Bottleneck module and attention (BA) module is designed. Here the attention not only uses spatial and channel (SC) attention but also adds residual connection, which is called 3D SC attention. Second, to enlarge the feature map receptive field without changing its resolution, a module consists of standard convolution and atrous spatial pyramid (CASP) module is designed. The feature map information is adjusted by standard convolution, subsequently, the feature map is provided as input to the ASP module. The CASP module fuses the features extracted by downsampling and performs upsampling operation, which strengthens the correlation between different layers of the network. Finally, using deep supervision as an auxiliary branch of the U-shaped network, it combines deep learning and regularization techniques to supervise the model during training, automatically finer parameters, and make the model fit better. Through experiments on BraTS 2020 and FeTS 2021 and comparison with other advanced methods, it has been demonstrated that DAUnet achieves precise segmentation of tumor regions in brain MRI images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
ElbingX发布了新的文献求助30
2秒前
3秒前
在水一方应助浮生采纳,获得10
3秒前
4秒前
paxton完成签到,获得积分20
4秒前
4秒前
支浩阑完成签到,获得积分10
5秒前
7秒前
杳鸢应助科研通管家采纳,获得20
7秒前
8秒前
李爱国应助科研通管家采纳,获得20
8秒前
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
李爱国应助陶醉觅夏采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
NPC应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得30
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
我是老大应助科研通管家采纳,获得10
8秒前
8秒前
情怀应助科研通管家采纳,获得10
9秒前
心台应助科研通管家采纳,获得10
9秒前
Endlessway应助科研通管家采纳,获得10
9秒前
Endlessway应助科研通管家采纳,获得10
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
林夕夕完成签到,获得积分10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
10秒前
10秒前
tuanheqi应助fzy采纳,获得50
11秒前
Akim应助叙温雨采纳,获得10
11秒前
天天快乐应助LL采纳,获得10
14秒前
井野浮应助想美事采纳,获得10
15秒前
JMZ14258发布了新的文献求助10
15秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229089
求助须知:如何正确求助?哪些是违规求助? 2876882
关于积分的说明 8196780
捐赠科研通 2544248
什么是DOI,文献DOI怎么找? 1374200
科研通“疑难数据库(出版商)”最低求助积分说明 646906
邀请新用户注册赠送积分活动 621693