DTIAM: A unified framework for predicting drug-target interactions, binding affinities and activation/inhibition mechanisms

结合亲和力 机制(生物学) 计算机科学 亲缘关系 药物靶点 药品 一般化 药物发现 计算生物学 药物开发 人工智能 机器学习 化学 药理学 生物信息学 生物 数学 受体 哲学 数学分析 认识论 生物化学 立体化学
作者
Zhangli Lu,Chuqi Lei,Kaili Wang,Libo Qin,Jing Tang,Min Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.15252
摘要

Accurate and robust prediction of drug-target interactions (DTIs) plays a vital role in drug discovery. Despite extensive efforts have been invested in predicting novel DTIs, existing approaches still suffer from insufficient labeled data and cold start problems. More importantly, there is currently a lack of studies focusing on elucidating the mechanism of action (MoA) between drugs and targets. Distinguishing the activation and inhibition mechanisms is critical and challenging in drug development. Here, we introduce a unified framework called DTIAM, which aims to predict interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets. DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training, which accurately extracts the substructure and contextual information of drugs and targets, and thus benefits the downstream prediction based on these representations. DTIAM achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario. Moreover, independent validation demonstrates the strong generalization ability of DTIAM. All these results suggested that DTIAM can provide a practically useful tool for predicting novel DTIs and further distinguishing the MoA of candidate drugs. DTIAM, for the first time, provides a unified framework for accurate and robust prediction of drug-target interactions, binding affinities, and activation/inhibition mechanisms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你的女孩TT完成签到,获得积分10
刚刚
落汤鸡完成签到,获得积分10
刚刚
悦耳傲旋发布了新的文献求助10
刚刚
Ganlou应助zhangjian采纳,获得30
刚刚
czb发布了新的文献求助10
1秒前
顺利发布了新的文献求助10
3秒前
炙热怀蝶发布了新的文献求助10
5秒前
不不鱼发布了新的文献求助20
5秒前
qwa发布了新的文献求助10
7秒前
7秒前
英姑应助ZZZ采纳,获得10
11秒前
berg发布了新的文献求助10
12秒前
囡囡发布了新的文献求助10
13秒前
ding完成签到,获得积分10
15秒前
Magician完成签到,获得积分10
17秒前
逝去的风完成签到 ,获得积分10
18秒前
18秒前
20秒前
叶轻寒完成签到,获得积分10
20秒前
ZZZ应助爱撒娇的酸奶采纳,获得10
22秒前
叶轻寒发布了新的文献求助10
24秒前
打打应助呃呃呃饿啊是采纳,获得10
25秒前
落汤鸡发布了新的文献求助10
26秒前
悦耳傲旋完成签到,获得积分10
31秒前
木棉完成签到,获得积分10
32秒前
33秒前
34秒前
英姑应助科研通管家采纳,获得10
36秒前
寻道图强应助科研通管家采纳,获得30
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
寻道图强应助科研通管家采纳,获得30
37秒前
37秒前
烟花应助科研通管家采纳,获得10
37秒前
元元发布了新的文献求助10
38秒前
晨曦完成签到 ,获得积分10
39秒前
Ma发布了新的文献求助10
40秒前
伶俐从筠发布了新的文献求助20
41秒前
yihaiqin发布了新的文献求助10
42秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309867
求助须知:如何正确求助?哪些是违规求助? 2943043
关于积分的说明 8512407
捐赠科研通 2618126
什么是DOI,文献DOI怎么找? 1430834
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490