DTIAM: A unified framework for predicting drug-target interactions, binding affinities and activation/inhibition mechanisms

结合亲和力 机制(生物学) 计算机科学 亲缘关系 药物靶点 药品 一般化 药物发现 计算生物学 药物开发 人工智能 机器学习 化学 药理学 生物信息学 生物 数学 数学分析 哲学 生物化学 受体 认识论 立体化学
作者
Zhangli Lu,Chuqi Lei,Kaili Wang,Libo Qin,Jing Tang,Min Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2312.15252
摘要

Accurate and robust prediction of drug-target interactions (DTIs) plays a vital role in drug discovery. Despite extensive efforts have been invested in predicting novel DTIs, existing approaches still suffer from insufficient labeled data and cold start problems. More importantly, there is currently a lack of studies focusing on elucidating the mechanism of action (MoA) between drugs and targets. Distinguishing the activation and inhibition mechanisms is critical and challenging in drug development. Here, we introduce a unified framework called DTIAM, which aims to predict interactions, binding affinities, and activation/inhibition mechanisms between drugs and targets. DTIAM learns drug and target representations from large amounts of label-free data through self-supervised pre-training, which accurately extracts the substructure and contextual information of drugs and targets, and thus benefits the downstream prediction based on these representations. DTIAM achieves substantial performance improvement over other state-of-the-art methods in all tasks, particularly in the cold start scenario. Moreover, independent validation demonstrates the strong generalization ability of DTIAM. All these results suggested that DTIAM can provide a practically useful tool for predicting novel DTIs and further distinguishing the MoA of candidate drugs. DTIAM, for the first time, provides a unified framework for accurate and robust prediction of drug-target interactions, binding affinities, and activation/inhibition mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无舟发布了新的文献求助10
1秒前
cfplhys发布了新的文献求助10
3秒前
3秒前
4秒前
wan发布了新的文献求助10
4秒前
人间无事人完成签到,获得积分10
6秒前
搜集达人应助yan采纳,获得10
7秒前
如意翡翠发布了新的文献求助10
7秒前
8秒前
8秒前
搜集达人应助MM采纳,获得10
9秒前
山复尔尔应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
Mr.Young完成签到,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
11秒前
共享精神应助科研通管家采纳,获得10
11秒前
zhijianzhe应助科研通管家采纳,获得50
11秒前
脑洞疼应助科研通管家采纳,获得30
11秒前
pcr163应助科研通管家采纳,获得200
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得20
11秒前
领导范儿应助科研通管家采纳,获得10
11秒前
11秒前
ED应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
12秒前
充电宝应助科研通管家采纳,获得10
12秒前
彭于彦祖应助科研通管家采纳,获得30
12秒前
852应助科研通管家采纳,获得10
12秒前
dypdyp应助科研通管家采纳,获得10
12秒前
所所应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
山复尔尔应助科研通管家采纳,获得10
12秒前
我心匪石不可转完成签到,获得积分10
12秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966615
求助须知:如何正确求助?哪些是违规求助? 3512055
关于积分的说明 11161483
捐赠科研通 3246880
什么是DOI,文献DOI怎么找? 1793552
邀请新用户注册赠送积分活动 874482
科研通“疑难数据库(出版商)”最低求助积分说明 804420