Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 工程类 语言学 哲学 算术 管理 工艺工程 经济
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迅速冰颜完成签到,获得积分10
1秒前
Diamond完成签到 ,获得积分10
2秒前
7秒前
俭朴的安阳完成签到 ,获得积分10
12秒前
tong发布了新的文献求助10
13秒前
19秒前
24秒前
ddddddd完成签到 ,获得积分10
25秒前
yidashi发布了新的文献求助10
25秒前
曾无忧完成签到,获得积分10
25秒前
28秒前
传奇3应助过噻采纳,获得10
28秒前
32秒前
林木森森完成签到,获得积分20
33秒前
Bear完成签到 ,获得积分10
34秒前
电磁很快学会应助陈星锦采纳,获得10
35秒前
35秒前
qpp完成签到,获得积分10
37秒前
41秒前
stretchability完成签到,获得积分10
41秒前
青桔柠檬完成签到 ,获得积分10
41秒前
大个应助林..采纳,获得10
43秒前
科研通AI2S应助Sherme采纳,获得10
48秒前
50秒前
笨笨的从阳SJW完成签到,获得积分10
50秒前
xiaohaonumber2完成签到 ,获得积分10
53秒前
MaHongyang完成签到,获得积分10
55秒前
薄荷完成签到,获得积分10
58秒前
59秒前
59秒前
1分钟前
1分钟前
Aries完成签到 ,获得积分10
1分钟前
科研通AI2S应助Minerva采纳,获得10
1分钟前
fly完成签到 ,获得积分10
1分钟前
1分钟前
过噻发布了新的文献求助10
1分钟前
1分钟前
1分钟前
yk发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137561
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787276
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300093
科研通“疑难数据库(出版商)”最低求助积分说明 625796
版权声明 601023