Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 算术 工程类 哲学 语言学 经济 管理 工艺工程
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助like采纳,获得10
1秒前
科研韭菜发布了新的文献求助10
3秒前
4秒前
Suki发布了新的文献求助10
4秒前
4秒前
mirror应助xiang采纳,获得10
4秒前
深年完成签到,获得积分10
5秒前
慕青应助浮云采纳,获得10
7秒前
Everglow完成签到,获得积分10
7秒前
7秒前
6666应助djbj2022采纳,获得10
8秒前
山下梅子酒完成签到 ,获得积分10
9秒前
9秒前
Ava应助木子李采纳,获得10
9秒前
9秒前
6666应助ichia采纳,获得10
10秒前
科研通AI2S应助无语的代真采纳,获得10
10秒前
10秒前
11秒前
12秒前
嗯呐发布了新的文献求助10
14秒前
kk完成签到 ,获得积分10
14秒前
14秒前
善莫大焉发布了新的文献求助10
14秒前
小怪完成签到,获得积分10
14秒前
like发布了新的文献求助10
15秒前
秦风发布了新的文献求助10
16秒前
无奈的醉薇完成签到,获得积分10
17秒前
17秒前
邢江利发布了新的文献求助10
18秒前
Ava应助尤小玉采纳,获得10
18秒前
18秒前
18秒前
叶帆完成签到,获得积分20
18秒前
19秒前
19秒前
尘曦完成签到,获得积分10
20秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
文艺的青旋完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811