亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 工程类 语言学 哲学 算术 管理 工艺工程 经济
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
reeedirect应助浅蓝色采纳,获得10
5秒前
8秒前
yuwen发布了新的文献求助10
10秒前
11秒前
wanci应助科研通管家采纳,获得10
11秒前
13秒前
14秒前
18秒前
26秒前
27秒前
29秒前
思源应助viyo采纳,获得10
31秒前
li发布了新的文献求助10
38秒前
qiu发布了新的文献求助10
41秒前
moyu123发布了新的文献求助10
41秒前
Jiaowen完成签到,获得积分10
42秒前
li完成签到,获得积分10
44秒前
小蘑菇应助重要的夏烟采纳,获得10
45秒前
星辰大海应助Charley采纳,获得10
50秒前
50秒前
moyu123完成签到,获得积分10
52秒前
冷酷哈密瓜完成签到,获得积分10
53秒前
liuzhigang完成签到 ,获得积分10
59秒前
yuwen发布了新的文献求助10
59秒前
RONG完成签到 ,获得积分10
1分钟前
1分钟前
hugeyoung发布了新的文献求助10
1分钟前
David完成签到,获得积分10
1分钟前
1分钟前
Focus_BG完成签到,获得积分10
1分钟前
郑郑得富完成签到 ,获得积分10
1分钟前
快飞飞完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
Charley发布了新的文献求助10
1分钟前
sjx_13351766056完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968364
求助须知:如何正确求助?哪些是违规求助? 3513238
关于积分的说明 11166890
捐赠科研通 3248549
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874979
科研通“疑难数据库(出版商)”最低求助积分说明 804629