亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 算术 工程类 哲学 语言学 经济 管理 工艺工程
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
wenky发布了新的文献求助10
19秒前
和光同尘发布了新的文献求助10
20秒前
山楂完成签到,获得积分10
23秒前
Gydl完成签到,获得积分10
24秒前
高高元柏完成签到,获得积分20
57秒前
1分钟前
哈哈发布了新的文献求助10
1分钟前
125mmD91T完成签到,获得积分10
1分钟前
负者歌于途完成签到,获得积分10
1分钟前
哈哈我完成签到,获得积分10
1分钟前
2分钟前
wearelulu完成签到,获得积分10
2分钟前
Micheal完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
momo发布了新的文献求助30
2分钟前
2分钟前
何何发布了新的文献求助10
3分钟前
可爱的函函应助何何采纳,获得10
3分钟前
momo完成签到,获得积分10
3分钟前
Lan完成签到 ,获得积分10
3分钟前
Wei发布了新的文献求助10
3分钟前
3分钟前
哈哈发布了新的文献求助10
4分钟前
jinsijia应助科研通管家采纳,获得10
4分钟前
哈哈发布了新的文献求助10
4分钟前
计划完成签到,获得积分10
4分钟前
魔幻诗兰完成签到,获得积分10
5分钟前
NexusExplorer应助科研小贩采纳,获得10
5分钟前
5分钟前
科研小贩发布了新的文献求助10
5分钟前
热情依白应助可爱寻芹采纳,获得10
5分钟前
从来都不会放弃zr完成签到,获得积分0
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
王吉萍完成签到 ,获得积分10
6分钟前
gcr完成签到 ,获得积分10
6分钟前
Lucas应助科研通管家采纳,获得10
6分钟前
Emilia发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5681609
求助须知:如何正确求助?哪些是违规求助? 5011314
关于积分的说明 15175896
捐赠科研通 4841184
什么是DOI,文献DOI怎么找? 2594973
邀请新用户注册赠送积分活动 1547960
关于科研通互助平台的介绍 1505990