Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 算术 工程类 哲学 语言学 经济 管理 工艺工程
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼海露完成签到,获得积分10
1秒前
我是老大应助肖旻采纳,获得10
2秒前
ChatGPT发布了新的文献求助10
3秒前
霸气的小刺猬完成签到,获得积分10
4秒前
星辰大海应助小王同学采纳,获得10
4秒前
4秒前
NexusExplorer应助流云采纳,获得10
4秒前
kang完成签到,获得积分10
5秒前
5秒前
美满的烙关注了科研通微信公众号
6秒前
大白应助落落采纳,获得20
6秒前
大模型应助霸气的小刺猬采纳,获得10
7秒前
量子星尘发布了新的文献求助10
9秒前
Bertha完成签到,获得积分10
9秒前
JamesPei应助霸气的小刺猬采纳,获得10
9秒前
shendu完成签到,获得积分10
10秒前
10秒前
10秒前
lnan发布了新的文献求助10
11秒前
SCIBUDDY发布了新的文献求助10
11秒前
传奇3应助博ge采纳,获得10
12秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
15秒前
整齐半青发布了新的文献求助10
15秒前
16秒前
美满的烙发布了新的文献求助10
17秒前
17秒前
活力菠萝发布了新的文献求助10
17秒前
小面脑袋发布了新的文献求助10
18秒前
充电宝应助Pengcheng采纳,获得10
19秒前
元羞花发布了新的文献求助10
20秒前
背后中心发布了新的文献求助10
21秒前
23秒前
流云发布了新的文献求助10
23秒前
com发布了新的文献求助10
25秒前
小蘑菇应助Gyr060307采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770594
求助须知:如何正确求助?哪些是违规求助? 5586008
关于积分的说明 15424556
捐赠科研通 4904087
什么是DOI,文献DOI怎么找? 2638509
邀请新用户注册赠送积分活动 1586384
关于科研通互助平台的介绍 1541462