Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 算术 工程类 哲学 语言学 经济 管理 工艺工程
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lll完成签到 ,获得积分10
刚刚
潘若溪发布了新的文献求助10
刚刚
刚刚
我是老大应助baixue采纳,获得10
刚刚
emily完成签到,获得积分20
刚刚
刚刚
迷你的寒荷完成签到,获得积分10
2秒前
David发布了新的文献求助10
3秒前
木子耶完成签到,获得积分10
3秒前
LuLu完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
7秒前
Daiys完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
诸事皆顺完成签到,获得积分10
8秒前
317关闭了317文献求助
8秒前
小二郎应助LL采纳,获得10
8秒前
褪黑素发布了新的文献求助10
9秒前
快乐肥宅水完成签到,获得积分20
9秒前
阿吟发布了新的文献求助10
9秒前
斧王发布了新的文献求助10
11秒前
crobro发布了新的文献求助200
11秒前
orixero应助pk39采纳,获得10
12秒前
彭甜完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
亿眼万年完成签到,获得积分10
12秒前
彭于晏应助陈炳超采纳,获得10
13秒前
May完成签到,获得积分10
15秒前
11完成签到,获得积分10
15秒前
16秒前
16秒前
认真的烧鹅完成签到,获得积分20
16秒前
小许完成签到,获得积分10
16秒前
17秒前
18秒前
刘亦平大美女完成签到,获得积分10
19秒前
科研通AI6应助David采纳,获得10
19秒前
科研通AI6应助David采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708501
求助须知:如何正确求助?哪些是违规求助? 5188470
关于积分的说明 15254044
捐赠科研通 4861497
什么是DOI,文献DOI怎么找? 2609497
邀请新用户注册赠送积分活动 1560013
关于科研通互助平台的介绍 1517781