已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-Task Credible Pseudo-Label Learning for Semi-Supervised Crowd Counting

计算机科学 人工智能 二元分类 任务(项目管理) 机器学习 二进制数 特征(语言学) 分割 模式识别(心理学) 提取器 多任务学习 支持向量机 数学 算术 工程类 哲学 语言学 经济 管理 工艺工程
作者
Pengfei Zhu,Jingqing Li,Bing Cao,Qinghua Hu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13
标识
DOI:10.1109/tnnls.2023.3241211
摘要

As a widely used semi-supervised learning strategy, self-training generates pseudo-labels to alleviate the labor-intensive and time-consuming annotation problems in crowd counting while boosting the model performance with limited labeled data and massive unlabeled data. However, the noise in the pseudo-labels of the density maps greatly hinders the performance of semi-supervised crowd counting. Although auxiliary tasks, e.g., binary segmentation, are utilized to help improve the feature representation learning ability, they are isolated from the main task, i.e., density map regression and the multi-task relationships are totally ignored. To address the above issues, we develop a multi-task credible pseudo-label learning (MTCP) framework for crowd counting, consisting of three multi-task branches, i.e., density regression as the main task, and binary segmentation and confidence prediction as the auxiliary tasks. Multi-task learning is conducted on the labeled data by sharing the same feature extractor for all three tasks and taking multi-task relations into account. To reduce epistemic uncertainty, the labeled data are further expanded, by trimming the labeled data according to the predicted confidence map for low-confidence regions, which can be regarded as an effective data augmentation strategy. For unlabeled data, compared with the existing works that only use the pseudo-labels of binary segmentation, we generate credible pseudo-labels of density maps directly, which can reduce the noise in pseudo-labels and therefore decrease aleatoric uncertainty. Extensive comparisons on four crowd-counting datasets demonstrate the superiority of our proposed model over the competing methods. The code is available at: https://github.com/ljq2000/MTCP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HMG1COA完成签到 ,获得积分10
刚刚
Akim应助健康的半仙采纳,获得10
1秒前
隐形曼青应助健康的半仙采纳,获得10
1秒前
搜集达人应助健康的半仙采纳,获得10
1秒前
深情安青应助健康的半仙采纳,获得10
1秒前
1秒前
Jasper应助健康的半仙采纳,获得10
1秒前
bkagyin应助健康的半仙采纳,获得10
1秒前
李健应助健康的半仙采纳,获得10
2秒前
科目三应助健康的半仙采纳,获得10
2秒前
汉堡包应助健康的半仙采纳,获得10
2秒前
SGOM完成签到 ,获得积分10
4秒前
赘婿应助哈哈哈采纳,获得10
5秒前
高熵合金发布了新的文献求助10
5秒前
8秒前
8秒前
李爱国应助健康的半仙采纳,获得10
8秒前
充电宝应助健康的半仙采纳,获得10
8秒前
酷波er应助健康的半仙采纳,获得10
8秒前
乐乐应助健康的半仙采纳,获得10
8秒前
科研通AI2S应助健康的半仙采纳,获得10
8秒前
星辰大海应助健康的半仙采纳,获得10
8秒前
共享精神应助健康的半仙采纳,获得10
8秒前
田様应助健康的半仙采纳,获得10
8秒前
领导范儿应助健康的半仙采纳,获得10
8秒前
坚强的灯泡完成签到,获得积分10
11秒前
13秒前
15秒前
17秒前
17秒前
乌冬面123发布了新的文献求助30
20秒前
fsznc完成签到 ,获得积分0
21秒前
玛卡巴卡完成签到 ,获得积分10
23秒前
LucienS发布了新的文献求助10
24秒前
今后应助prrrratt采纳,获得10
26秒前
燚槿完成签到 ,获得积分10
28秒前
田様应助笨笨桐采纳,获得10
28秒前
28秒前
29秒前
ding应助lingyan采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590129
求助须知:如何正确求助?哪些是违规求助? 4674579
关于积分的说明 14794548
捐赠科研通 4630299
什么是DOI,文献DOI怎么找? 2532556
邀请新用户注册赠送积分活动 1501218
关于科研通互助平台的介绍 1468571