Investigation on the fracture mechanism and constitutive relations of a typical Ni-based superalloy

材料科学 高温合金 酒窝 极限抗拉强度 动态再结晶 聚结(物理) 变形(气象学) 复合材料 本构方程 粒子群优化 应变率 冶金 热力学 微观结构 热加工 有限元法 机器学习 物理 计算机科学 天体生物学
作者
Xiao–Min Chen,Liao–Yuan Nie,Hongwei Hu,Y.C. Lin,Jian Zhang,Xiaojie Zhou,Xianzheng Lu,Jian Chen,Yanxing Liu
出处
期刊:Materials today communications [Elsevier]
卷期号:35: 105612-105612 被引量:15
标识
DOI:10.1016/j.mtcomm.2023.105612
摘要

The hot tensile behavior of a typical Ni-based superalloy is elucidated using a microcomputer-controlled electronic universal testing machine at various deformation temperatures (920–1010 °C) and strain rates (0.001–0.01 s−1). Further, the influence of deformation parameters on the fracture characteristics is clarified. The results reveal that the tensile stress speedily rises to a peak level, beyond which it continuously declines until the final rupture. Moreover, numerous dimples exist on the fracture surface, and tenacity nests appear between adjacent dimples, suggesting that micro-void coalescence is the primary failure mechanism. Meanwhile, almost completed dynamic recrystallization (DRX) at elevated deformation temperature and slow strain rate promotes the intergranular fracture of the tested superalloy. Besides, an Arrhenius-type (AT) constitutive model and an artificial neural network (ANN) combined with particle swarm optimization (PSO) algorithms are established and validated. The maximum value of the mean absolute relative error (MARE) for the AT model is 9.74%, while it decreases to 4.20% for the PSO-ANN model. The correlation coefficient (R) increases from 0.9050 for the AT model to 0.9737 for the PSO-ANN model. Overall, it is demonstrated that the established PSO-ANN model has a high prediction performance and is an effective model for reproducing the hot tensile behavior of the tested superalloy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
乐观德地完成签到,获得积分10
刚刚
大个应助yf_zhu采纳,获得10
刚刚
llk发布了新的文献求助10
1秒前
一只大肥猫完成签到,获得积分10
1秒前
1秒前
3秒前
3秒前
3秒前
3秒前
科研通AI5应助GGG采纳,获得10
4秒前
4秒前
6秒前
Ann发布了新的文献求助20
6秒前
6秒前
buno应助duxinyue采纳,获得10
6秒前
xlj发布了新的文献求助10
7秒前
7秒前
可爱的函函应助zhen采纳,获得10
8秒前
研友_VZG7GZ应助dingdong采纳,获得10
9秒前
9秒前
李成恩完成签到 ,获得积分10
10秒前
心碎的黄焖鸡完成签到 ,获得积分10
10秒前
琪琪扬扬发布了新的文献求助10
11秒前
12秒前
12秒前
宗磬完成签到,获得积分10
13秒前
NexusExplorer应助搞怪不言采纳,获得10
14秒前
科研通AI5应助一天八杯水采纳,获得10
15秒前
15秒前
15秒前
16秒前
大模型应助琪琪扬扬采纳,获得10
17秒前
丘比特应助琪琪扬扬采纳,获得10
17秒前
共享精神应助琪琪扬扬采纳,获得10
17秒前
JamesPei应助dafwfwaf采纳,获得10
17秒前
叶子完成签到,获得积分10
17秒前
xuyun完成签到,获得积分10
17秒前
脑洞疼应助木棉采纳,获得10
17秒前
GGG发布了新的文献求助10
17秒前
zena92完成签到,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808