已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatized Detection of Crohn’s Disease in Intestinal Ultrasound Using Convolutional Neural Network

卷积神经网络 医学 炎症性肠病 超声波 人工智能 克罗恩病 人工神经网络 增稠 放射科 计算机科学 内科学 疾病 化学 高分子科学
作者
Dan Carter,Ahmad Albshesh,Carmi Shimon,Batel Segal,Alex Yershov,Uri Kopylov,Adele Meyers,Rafael Y. Brzezinski,Shomron Ben‐Horin,Oshrit Hoffer
出处
期刊:Inflammatory Bowel Diseases [Oxford University Press]
卷期号:29 (12): 1901-1906 被引量:15
标识
DOI:10.1093/ibd/izad014
摘要

Abstract Introduction The use of intestinal ultrasound (IUS) for the diagnosis and follow-up of inflammatory bowel disease is steadily growing. Although access to educational platforms of IUS is feasible, novice ultrasound operators lack experience in performing and interpreting IUS. An artificial intelligence (AI)–based operator supporting system that automatically detects bowel wall inflammation may simplify the use of IUS by less experienced operators. Our aim was to develop and validate an artificial intelligence module that can distinguish bowel wall thickening (a surrogate of bowel inflammation) from normal bowel images of IUS. Methods We used a self-collected image data set to develop and validate a convolutional neural network module that can distinguish bowel wall thickening >3 mm (a surrogate of bowel inflammation) from normal bowel images of IUS. Results The data set consisted of 1008 images, distributed uniformly (50% normal images, 50% abnormal images). Execution of the training phase and the classification phase was performed using 805 and 203 images, respectively. The overall accuracy, sensitivity, and specificity for detection of bowel wall thickening were 90.1%, 86.4%, and 94%, respectively. The network exhibited an average area under the ROC curve of 0.9777 for this task. Conclusions We developed a machine-learning module based on a pretrained convolutional neural network that is highly accurate in the recognition of bowel wall thickening on intestinal ultrasound images in Crohn’s disease. Incorporation of convolutional neural network to IUS may facilitate the use of IUS by inexperienced operators and allow automatized detection of bowel inflammation and standardization of IUS imaging interpretation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小凯完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
魏行方完成签到 ,获得积分10
3秒前
3秒前
CipherSage应助画晴采纳,获得10
3秒前
4秒前
5秒前
LZL完成签到 ,获得积分10
5秒前
阿俊1212完成签到,获得积分10
5秒前
baihehuakai完成签到 ,获得积分10
5秒前
xiao完成签到 ,获得积分10
6秒前
Hello应助纯真玉兰采纳,获得10
7秒前
tczw667完成签到,获得积分10
8秒前
研友_ZzwoR8发布了新的文献求助10
8秒前
咸鱼的艺术完成签到 ,获得积分10
9秒前
搜集达人应助会会小小胖采纳,获得10
10秒前
小丿丫丿丫完成签到 ,获得积分10
11秒前
11秒前
maclogos完成签到,获得积分10
14秒前
16秒前
abbytang发布了新的文献求助30
18秒前
guyutian完成签到,获得积分20
19秒前
19秒前
纯真玉兰完成签到,获得积分10
19秒前
772829完成签到 ,获得积分10
19秒前
Yitong发布了新的文献求助10
21秒前
短短长又长完成签到 ,获得积分20
21秒前
22秒前
可爱以冬完成签到 ,获得积分10
23秒前
Hayat发布了新的文献求助30
24秒前
WXHL完成签到 ,获得积分10
26秒前
27秒前
朴素访琴完成签到 ,获得积分10
27秒前
典雅葶完成签到 ,获得积分10
28秒前
典雅的万宝路完成签到 ,获得积分10
29秒前
xixi完成签到 ,获得积分10
31秒前
高发完成签到 ,获得积分10
31秒前
严明完成签到,获得积分10
32秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229557
求助须知:如何正确求助?哪些是违规求助? 2877158
关于积分的说明 8198080
捐赠科研通 2544513
什么是DOI,文献DOI怎么找? 1374456
科研通“疑难数据库(出版商)”最低求助积分说明 646970
邀请新用户注册赠送积分活动 621749