DRL-Based Offloading for Computation Delay Minimization in Wireless-Powered Multi-Access Edge Computing

计算卸载 计算机科学 无线 边缘计算 最优化问题 移动边缘计算 计算 无线网络 数学优化 边缘设备 整数规划 计算复杂性理论 GSM演进的增强数据速率 缩小 传输(电信) 算法 人工智能 数学 云计算 电信 程序设计语言 操作系统
作者
Kechen Zheng,Guodong Jiang,Xiaoying Liu,Kaikai Chi,Xin‐Wei Yao,Jiajia Liu
出处
期刊:IEEE Transactions on Communications [IEEE Communications Society]
卷期号:71 (3): 1755-1770 被引量:37
标识
DOI:10.1109/tcomm.2023.3237854
摘要

Wireless power transfer (WPT) and edge computing have been validated as effective ways to solve the energy-limited problem and computation-capacity-limited problem of wireless devices (WDs), respectively. This paper studies the wireless-powered multi-access edge computing (WP-MEC) network, where WDs conduct either local computing or task offloading for their individable computation tasks. We aim to minimize total computation delay (TCD) when each WD has a computation task to execute, referred to as the total computation delay minimization (TCDM) problem, by jointly optimizing the offloading-decision, WPT duration, and transmission durations of offloading WDs. The TCDM problem is a mixed integer programming (MIP) problem that is challenging to efficiently obtain the optimal or near-optimal solution. To tackle this challenge, we decompose the TCDM problem into the sub-problem of optimizing the WPT duration and transmission durations, and the top-problem of optimizing the offloading decision. For the nonconvex sub-problem, we design a worst-WD-adjusting (WDA) algorithm to efficiently obtain its optimal solution. For the top-problem, under the time-varying channel conditions, traditional optimization methods are hard to determine the optimal or near-optimal offloading decision within the channel coherence duration. To fast obtain the near-optimal offloading decision, we propose a deep neural networks (DNN)-based deep reinforcement learning (DRL) model, which takes the sub-problem solving as one component for utility evaluation. Finally, numerical results demonstrate that the proposed online DRL-based offloading algorithm achieves the near-minimal TCD with low computational complexity, and is suitable for the fast-fading WP-MEC network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oumu完成签到,获得积分10
刚刚
不灭完成签到,获得积分10
刚刚
程爽完成签到,获得积分10
2秒前
3秒前
3秒前
Hello应助Xdz采纳,获得10
3秒前
3秒前
苏南完成签到 ,获得积分10
4秒前
试错完成签到,获得积分10
6秒前
koko发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
7秒前
cctv18应助zzhbby采纳,获得10
8秒前
orixero应助zhanghaoxiang采纳,获得10
9秒前
香蕉觅云应助有的没的采纳,获得10
10秒前
酷酷平灵完成签到,获得积分10
11秒前
xiaolifeidao完成签到,获得积分10
11秒前
11秒前
11秒前
Ren.完成签到,获得积分10
12秒前
12秒前
clf应助负责冰凡采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
13秒前
airvince应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得30
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
13秒前
Radiant发布了新的文献求助10
13秒前
15秒前
15秒前
豆子完成签到,获得积分10
15秒前
15秒前
zhangxinxin完成签到 ,获得积分10
16秒前
L1nJ1nG完成签到,获得积分10
17秒前
壮观柔完成签到,获得积分20
18秒前
zou发布了新的文献求助10
18秒前
20秒前
20秒前
20秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756472
求助须知:如何正确求助?哪些是违规求助? 3299848
关于积分的说明 10111676
捐赠科研通 3014416
什么是DOI,文献DOI怎么找? 1655523
邀请新用户注册赠送积分活动 789986
科研通“疑难数据库(出版商)”最低求助积分说明 753523