亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fair Dynamic Rationing

配置效率 定量配给 参数化复杂度 事前 匹配(统计) 经济 计算机科学 微观经济学 数学优化 计量经济学 数学 医疗保健 统计 算法 经济增长 宏观经济学
作者
Vahideh Manshadi,Rad Niazadeh,Scott Rodilitz
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (11): 6818-6836 被引量:1
标识
DOI:10.1287/mnsc.2023.4700
摘要

We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. As one example, early in the COVID-19 pandemic, the Federal Emergency Management Agency faced overwhelming, temporally scattered, a priori uncertain, and correlated demands for medical supplies from different states. In such contexts, social planners aim to maximize the minimum fill rate across sequentially arriving agents, where each agent’s fill rate (i.e., its fraction of satisfied demand) is determined by an irrevocable, one-time allocation. For an arbitrarily correlated sequence of demands, we establish upper bounds on the expected minimum fill rate (ex post fairness) and the minimum expected fill rate (ex ante fairness) achievable by any policy. Our upper bounds are parameterized by the number of agents and the expected demand-to-supply ratio, yet we design a simple adaptive policy called projected proportional allocation (PPA) that simultaneously achieves matching lower bounds for both objectives (ex post and ex ante fairness) for any set of parameters. Our PPA policy is transparent and easy to implement, as it does not rely on distributional information beyond the first conditional moments. Despite its simplicity, we demonstrate that the PPA policy provides significant improvement over the canonical class of nonadaptive target-fill-rate policies. We complement our theoretical developments with a numerical study motivated by the rationing of COVID-19 medical supplies based on a standard compartmental modeling approach that is commonly used to forecast pandemic trajectories. In such a setting, our PPA policy significantly outperforms its theoretical guarantee and the optimal target-fill-rate policy. This paper was accepted by Omar Besbes, revenue management and market analytics. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4700 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助fff采纳,获得10
8秒前
川藏客完成签到 ,获得积分10
55秒前
希望天下0贩的0应助zoloft采纳,获得10
1分钟前
1分钟前
fff发布了新的文献求助10
1分钟前
Qing完成签到 ,获得积分10
1分钟前
1分钟前
zoloft发布了新的文献求助10
1分钟前
SciGPT应助fff采纳,获得10
2分钟前
搜集达人应助zoloft采纳,获得10
2分钟前
领导范儿应助朴素的山蝶采纳,获得10
3分钟前
4分钟前
4分钟前
fff发布了新的文献求助10
4分钟前
4分钟前
4分钟前
英姑应助fff采纳,获得10
4分钟前
4分钟前
李爱国应助lda采纳,获得10
5分钟前
jianning完成签到,获得积分10
5分钟前
5分钟前
6分钟前
玛琳卡迪马完成签到 ,获得积分10
7分钟前
7分钟前
您晓发布了新的文献求助10
8分钟前
zoloft发布了新的文献求助10
8分钟前
小二郎应助zoloft采纳,获得30
8分钟前
科研通AI2S应助您晓采纳,获得10
8分钟前
9分钟前
lda发布了新的文献求助10
9分钟前
9分钟前
zoloft发布了新的文献求助30
9分钟前
Akim应助zoloft采纳,获得30
9分钟前
lovelife完成签到,获得积分10
9分钟前
百里青寒完成签到,获得积分10
9分钟前
10分钟前
七彩光完成签到 ,获得积分10
11分钟前
Spring完成签到,获得积分10
11分钟前
12分钟前
fff发布了新的文献求助10
12分钟前
高分求助中
Sustainability in Tides Chemistry 1500
Handbook of the Mammals of the World – Volume 3: Primates 805
拟南芥模式识别受体参与调控抗病蛋白介导的ETI免疫反应的机制研究 550
Gerard de Lairesse : an artist between stage and studio 500
Digging and Dealing in Eighteenth-Century Rome 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3068122
求助须知:如何正确求助?哪些是违规求助? 2722142
关于积分的说明 7476029
捐赠科研通 2369115
什么是DOI,文献DOI怎么找? 1256205
科研通“疑难数据库(出版商)”最低求助积分说明 609490
版权声明 596826