Fair Dynamic Rationing

配置效率 定量配给 参数化复杂度 事前 匹配(统计) 经济 计算机科学 微观经济学 数学优化 计量经济学 数学 医疗保健 统计 算法 经济增长 宏观经济学
作者
Vahideh Manshadi,Rad Niazadeh,Scott Rodilitz
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:69 (11): 6818-6836 被引量:1
标识
DOI:10.1287/mnsc.2023.4700
摘要

We study the allocative challenges that governmental and nonprofit organizations face when tasked with equitable and efficient rationing of a social good among agents whose needs (demands) realize sequentially and are possibly correlated. As one example, early in the COVID-19 pandemic, the Federal Emergency Management Agency faced overwhelming, temporally scattered, a priori uncertain, and correlated demands for medical supplies from different states. In such contexts, social planners aim to maximize the minimum fill rate across sequentially arriving agents, where each agent’s fill rate (i.e., its fraction of satisfied demand) is determined by an irrevocable, one-time allocation. For an arbitrarily correlated sequence of demands, we establish upper bounds on the expected minimum fill rate (ex post fairness) and the minimum expected fill rate (ex ante fairness) achievable by any policy. Our upper bounds are parameterized by the number of agents and the expected demand-to-supply ratio, yet we design a simple adaptive policy called projected proportional allocation (PPA) that simultaneously achieves matching lower bounds for both objectives (ex post and ex ante fairness) for any set of parameters. Our PPA policy is transparent and easy to implement, as it does not rely on distributional information beyond the first conditional moments. Despite its simplicity, we demonstrate that the PPA policy provides significant improvement over the canonical class of nonadaptive target-fill-rate policies. We complement our theoretical developments with a numerical study motivated by the rationing of COVID-19 medical supplies based on a standard compartmental modeling approach that is commonly used to forecast pandemic trajectories. In such a setting, our PPA policy significantly outperforms its theoretical guarantee and the optimal target-fill-rate policy. This paper was accepted by Omar Besbes, revenue management and market analytics. Supplemental Material: The data files and online appendices are available at https://doi.org/10.1287/mnsc.2023.4700 .

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助小陈采纳,获得10
1秒前
小小康康完成签到,获得积分10
2秒前
6秒前
明理的电灯完成签到 ,获得积分10
9秒前
情怀应助赵雪莹采纳,获得10
10秒前
六妜发布了新的文献求助10
11秒前
tcmj发布了新的文献求助10
11秒前
tcmj完成签到,获得积分10
18秒前
ANG完成签到 ,获得积分10
25秒前
hhh完成签到 ,获得积分10
26秒前
26秒前
28秒前
djdh发布了新的文献求助10
29秒前
云那边的山完成签到,获得积分10
31秒前
情怀应助Rebeccaiscute采纳,获得10
32秒前
复杂的海完成签到,获得积分10
33秒前
果蝇发布了新的文献求助10
33秒前
浮光完成签到,获得积分0
37秒前
研友_enPJa8完成签到,获得积分10
44秒前
Shirley完成签到,获得积分10
45秒前
dsfsd完成签到,获得积分10
45秒前
果蝇关注了科研通微信公众号
51秒前
54秒前
竹本完成签到 ,获得积分10
55秒前
苏苏弋完成签到 ,获得积分10
55秒前
半夜汽笛完成签到 ,获得积分10
57秒前
小陈发布了新的文献求助10
59秒前
爱笑的绮露完成签到 ,获得积分10
1分钟前
miaomiao123完成签到 ,获得积分10
1分钟前
jiajia完成签到 ,获得积分20
1分钟前
DduYy完成签到,获得积分10
1分钟前
Sivledy完成签到,获得积分10
1分钟前
希望天下0贩的0应助djdh采纳,获得10
1分钟前
1分钟前
afrex完成签到,获得积分10
1分钟前
Lio发布了新的文献求助10
1分钟前
小智0921完成签到,获得积分10
1分钟前
妞妞叫小南完成签到,获得积分10
1分钟前
Zz完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5852066
求助须知:如何正确求助?哪些是违规求助? 6275741
关于积分的说明 15627645
捐赠科研通 4967992
什么是DOI,文献DOI怎么找? 2678855
邀请新用户注册赠送积分活动 1623112
关于科研通互助平台的介绍 1579503