Federated machine learning for privacy preserving, collective supply chain risk prediction

人气 供应链 前提 订单(交换) 计算机科学 要价 集体智慧 协作学习 机器学习 知识管理 风险分析(工程) 人工智能 业务 营销 财务 哲学 社会心理学 语言学 心理学
作者
Zheng Ge,Lingxuan Kong,Alexandra Brintrup
出处
期刊:International Journal of Production Research [Taylor & Francis]
卷期号:61 (23): 8115-8132 被引量:44
标识
DOI:10.1080/00207543.2022.2164628
摘要

The use of Artificial Intelligence (AI) for predicting supply chain risk has gained popularity. However, proposed approaches are based on the premise that organisations act alone, rather than a collective when predicting risk, despite the interconnected nature of supply chains. This yields a problem: organisations that have inadequate datasets cannot predict risk. While data-sharing has been proposed to evaluate risk, in practice this does not happen due to privacy concerns. We propose a federated learning approach for collective risk prediction without the risk of data exposure. We ask: Can organisations who have inadequate datasets tap into collective knowledge? This raises a second question: Under what circumstances would collective risk prediction be beneficial? We present an empirical case study where buyers predict order delays from their shared suppliers before and after Covid-19. Results show that federated learning can indeed help supply chain members predict risk effectively, especially for buyers with limited datasets. Training data-imbalance, disruptions, and algorithm choice are significant factors in the efficacy of this approach. Interestingly, data-sharing or collective risk prediction is not always the best choice for buyers with disproportionately larger order-books. We thus call for further research on on local and collective learning paradigms in supply chains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11点40完成签到,获得积分20
刚刚
1秒前
今后应助HXH采纳,获得10
1秒前
2秒前
2秒前
仲大船完成签到,获得积分10
2秒前
Aoch完成签到,获得积分10
3秒前
3秒前
jclin发布了新的文献求助10
3秒前
爆米花应助仲大船采纳,获得10
4秒前
5秒前
2623196525发布了新的文献求助10
5秒前
我是老大应助周济采纳,获得10
5秒前
6秒前
耍酷镜子完成签到,获得积分20
7秒前
7秒前
充电宝应助Magellan采纳,获得10
8秒前
Ttt完成签到,获得积分10
8秒前
咕噜咕噜发布了新的文献求助30
10秒前
10秒前
11秒前
12秒前
12秒前
zz完成签到,获得积分0
13秒前
13秒前
13秒前
愉快的花卷完成签到,获得积分10
15秒前
不想干活应助酷酷的涵蕾采纳,获得10
16秒前
云海老完成签到,获得积分10
16秒前
制冷剂发布了新的文献求助10
16秒前
阿王发布了新的文献求助10
17秒前
派总发布了新的文献求助10
17秒前
周济发布了新的文献求助10
17秒前
zzx完成签到,获得积分10
18秒前
18秒前
情怀应助kaokao采纳,获得10
18秒前
19秒前
JamesPei应助唠叨的小凝采纳,获得10
20秒前
Ivaly发布了新的文献求助50
23秒前
顾矜应助制冷剂采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
Lab-on-a-chip Devices for Advanced Biomedicines: Laboratory Scale Engineering to Clinical Ecosystem 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4533126
求助须知:如何正确求助?哪些是违规求助? 3970111
关于积分的说明 12300043
捐赠科研通 3636618
什么是DOI,文献DOI怎么找? 2001960
邀请新用户注册赠送积分活动 1037811
科研通“疑难数据库(出版商)”最低求助积分说明 927302