An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images

瘀伤 计算机科学 人工智能 瓶颈 RGB颜色模型 计算机视觉 热的 目标检测 噪音(视频) 模式识别(心理学) 图像(数学) 物理 嵌入式系统 医学 外科 气象学
作者
Peijie Lin,Hua Yang,Shuying Cheng,Feng Guo,Lijin Wang,Yaohai Lin
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:199: 112280-112280 被引量:15
标识
DOI:10.1016/j.postharvbio.2023.112280
摘要

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5–13 µm) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大神装发布了新的文献求助10
刚刚
所所应助敏感的莆采纳,获得10
刚刚
端庄的访枫完成签到 ,获得积分10
刚刚
唐新惠完成签到 ,获得积分10
刚刚
小杨完成签到 ,获得积分10
1秒前
张琳发布了新的文献求助10
1秒前
整齐的泥猴桃完成签到,获得积分10
1秒前
hanyuguo关注了科研通微信公众号
1秒前
YING发布了新的文献求助10
1秒前
1秒前
yydragen应助新司机采纳,获得50
2秒前
edcee完成签到,获得积分20
2秒前
sally完成签到,获得积分10
2秒前
竹桃完成签到 ,获得积分10
3秒前
modesty发布了新的文献求助10
3秒前
mark完成签到,获得积分10
3秒前
何1完成签到,获得积分10
4秒前
4秒前
Akim应助Rain采纳,获得10
4秒前
高贵煎蛋完成签到,获得积分10
4秒前
Maestro_S应助王炸采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
sxwzssyj发布了新的文献求助10
5秒前
小马完成签到,获得积分10
6秒前
qikaka完成签到,获得积分10
6秒前
不想搞事应助活泼的幻丝采纳,获得20
6秒前
王树野发布了新的文献求助10
7秒前
Yang完成签到,获得积分10
8秒前
myuniv发布了新的文献求助30
8秒前
8秒前
动如脱兔完成签到,获得积分10
9秒前
9秒前
SYLH应助维时采纳,获得10
9秒前
临在发布了新的文献求助10
9秒前
Yuliya完成签到,获得积分10
10秒前
叶赛文发布了新的文献求助30
11秒前
11秒前
Danny完成签到,获得积分10
11秒前
赘婿应助哎呀妈呀采纳,获得10
12秒前
Kai完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016787
求助须知:如何正确求助?哪些是违规求助? 3556966
关于积分的说明 11323317
捐赠科研通 3289698
什么是DOI,文献DOI怎么找? 1812525
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812121