An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images

瘀伤 计算机科学 人工智能 瓶颈 RGB颜色模型 计算机视觉 热的 目标检测 噪音(视频) 模式识别(心理学) 图像(数学) 物理 嵌入式系统 医学 外科 气象学
作者
Peijie Lin,Hua Yang,Shuying Cheng,Feng Guo,Lijin Wang,Yaohai Lin
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:199: 112280-112280 被引量:15
标识
DOI:10.1016/j.postharvbio.2023.112280
摘要

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5–13 µm) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏xx完成签到 ,获得积分10
刚刚
八轩发布了新的文献求助10
3秒前
彭于晏应助hourt2395采纳,获得30
4秒前
传奇3应助风雨无阻采纳,获得10
5秒前
samhainsuuun完成签到,获得积分10
6秒前
pp完成签到,获得积分10
6秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
清飏应助zhuzhu采纳,获得10
8秒前
惊鸿一面发布了新的文献求助10
8秒前
11秒前
今后应助唠叨的向日葵采纳,获得10
12秒前
12秒前
13秒前
深水鱼发布了新的文献求助20
13秒前
Joy完成签到 ,获得积分10
14秒前
14秒前
16秒前
风雨无阻发布了新的文献求助10
17秒前
18秒前
18秒前
hourt2395发布了新的文献求助30
19秒前
甜甜圈完成签到,获得积分10
19秒前
悠南完成签到 ,获得积分10
19秒前
asdfg完成签到,获得积分10
19秒前
沉默水瑶发布了新的文献求助30
19秒前
20秒前
CipherSage应助wuxunxun2015采纳,获得10
20秒前
里维发布了新的文献求助10
21秒前
21秒前
22秒前
失眠芾发布了新的文献求助10
23秒前
三七二一完成签到,获得积分10
24秒前
嘿嘿发布了新的文献求助10
25秒前
英吉利25发布了新的文献求助10
26秒前
orixero应助huhdcid采纳,获得10
28秒前
吴旭东完成签到,获得积分10
28秒前
pzc完成签到,获得积分10
28秒前
大模型应助kkkkkkkkkkk采纳,获得10
29秒前
香蕉觅云应助hourt2395采纳,获得10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5613426
求助须知:如何正确求助?哪些是违规求助? 4698635
关于积分的说明 14898394
捐赠科研通 4736224
什么是DOI,文献DOI怎么找? 2547047
邀请新用户注册赠送积分活动 1511004
关于科研通互助平台的介绍 1473546