An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images

瘀伤 计算机科学 人工智能 瓶颈 RGB颜色模型 计算机视觉 热的 目标检测 噪音(视频) 模式识别(心理学) 图像(数学) 物理 嵌入式系统 医学 外科 气象学
作者
Peijie Lin,Hua Yang,Shuying Cheng,Feng Guo,Lijin Wang,Yaohai Lin
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:199: 112280-112280 被引量:15
标识
DOI:10.1016/j.postharvbio.2023.112280
摘要

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5–13 µm) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助仙子狗尾巴花采纳,获得10
刚刚
tylerconan完成签到 ,获得积分10
1秒前
1秒前
英俊的铭应助隐形的易巧采纳,获得10
2秒前
独特微笑发布了新的文献求助10
2秒前
学海无涯完成签到,获得积分10
2秒前
科研小民工应助机智苗采纳,获得30
2秒前
楼梯口无头女孩完成签到,获得积分10
5秒前
5秒前
Grayball应助gg采纳,获得10
5秒前
5秒前
456发布了新的文献求助10
5秒前
6秒前
凤凰山发布了新的文献求助10
6秒前
独特的绿蝶完成签到,获得积分10
6秒前
6秒前
清歌扶酒发布了新的文献求助10
6秒前
东风完成签到,获得积分10
7秒前
8秒前
呆萌幼晴完成签到,获得积分10
8秒前
qinqiny完成签到 ,获得积分10
9秒前
9秒前
周小慧完成签到,获得积分20
9秒前
轻松的人龙完成签到,获得积分20
9秒前
小蘑菇应助yxf采纳,获得10
9秒前
1199关注了科研通微信公众号
9秒前
星辰大海应助小赞芽采纳,获得10
9秒前
郑开司09发布了新的文献求助10
10秒前
溪与芮行完成签到 ,获得积分10
10秒前
QS完成签到,获得积分10
10秒前
彭于晏应助Stanley采纳,获得10
12秒前
小二郎应助Stanley采纳,获得10
12秒前
扑通扑通通完成签到 ,获得积分10
12秒前
lgh完成签到,获得积分10
13秒前
研友_ZAVod8发布了新的文献求助10
13秒前
13秒前
打打应助贤惠的豪英采纳,获得10
14秒前
仙子狗尾巴花完成签到,获得积分10
14秒前
虎咪咪完成签到,获得积分10
14秒前
liyi发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762