An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images

瘀伤 计算机科学 人工智能 瓶颈 RGB颜色模型 计算机视觉 热的 目标检测 噪音(视频) 模式识别(心理学) 图像(数学) 物理 嵌入式系统 医学 外科 气象学
作者
Peijie Lin,Hua Yang,Shuying Cheng,Feng Guo,Lijin Wang,Yaohai Lin
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:199: 112280-112280 被引量:15
标识
DOI:10.1016/j.postharvbio.2023.112280
摘要

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5–13 µm) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjzhan发布了新的文献求助20
刚刚
乐乐应助哈哈哈哈采纳,获得10
1秒前
wenwen完成签到 ,获得积分10
1秒前
大力寇完成签到,获得积分10
3秒前
3秒前
Lyanph完成签到 ,获得积分10
4秒前
7秒前
7秒前
乐乐乐乐乐乐应助tylerconan采纳,获得10
8秒前
8秒前
8秒前
8秒前
叶圣贤发布了新的文献求助10
10秒前
李健的小迷弟应助nulinuli采纳,获得10
11秒前
11秒前
XXRR发布了新的文献求助10
12秒前
14秒前
CKJ完成签到,获得积分10
15秒前
英姑应助Sara采纳,获得10
15秒前
16秒前
科研大王发布了新的文献求助10
18秒前
ZZCrazy发布了新的文献求助10
18秒前
19秒前
anchor完成签到,获得积分10
20秒前
20秒前
20秒前
小蘑菇应助sincerely采纳,获得10
21秒前
喜白Q完成签到,获得积分10
22秒前
时尚初柳应助Archie采纳,获得10
22秒前
ZZCrazy完成签到,获得积分10
22秒前
23秒前
整齐的大开应助大力寇采纳,获得10
23秒前
24秒前
狂野飞瑶完成签到,获得积分10
24秒前
25秒前
CipherSage应助岁寒采纳,获得10
25秒前
lyp发布了新的文献求助10
26秒前
27秒前
深情安青应助jovrtic采纳,获得30
28秒前
28秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206929
求助须知:如何正确求助?哪些是违规求助? 2856304
关于积分的说明 8103836
捐赠科研通 2521393
什么是DOI,文献DOI怎么找? 1354579
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613277