An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images

瘀伤 计算机科学 人工智能 瓶颈 RGB颜色模型 计算机视觉 热的 目标检测 噪音(视频) 模式识别(心理学) 图像(数学) 物理 嵌入式系统 医学 外科 气象学
作者
Peijie Lin,Hua Yang,Shuying Cheng,Feng Guo,Lijin Wang,Yaohai Lin
出处
期刊:Postharvest Biology and Technology [Elsevier]
卷期号:199: 112280-112280 被引量:15
标识
DOI:10.1016/j.postharvbio.2023.112280
摘要

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5–13 µm) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ASAsayHIiii完成签到,获得积分10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
老福贵儿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
3秒前
可爱绮发布了新的文献求助10
6秒前
hj发布了新的文献求助10
6秒前
9秒前
华仔应助幸运鹅采纳,获得10
12秒前
幽默依凝完成签到,获得积分10
12秒前
13秒前
13秒前
小马甲应助可爱绮采纳,获得10
13秒前
Prejudice3发布了新的文献求助10
16秒前
SciGPT应助ZHI采纳,获得10
19秒前
青山完成签到 ,获得积分10
20秒前
金黎发布了新的文献求助10
20秒前
欢呼靳完成签到 ,获得积分10
20秒前
机智的灵萱完成签到,获得积分10
20秒前
君衡完成签到 ,获得积分10
23秒前
微暖完成签到,获得积分0
27秒前
Xjx6519发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557589
求助须知:如何正确求助?哪些是违规求助? 4642695
关于积分的说明 14668834
捐赠科研通 4584089
什么是DOI,文献DOI怎么找? 2514585
邀请新用户注册赠送积分活动 1488838
关于科研通互助平台的介绍 1459523