An improved YOLOv5s method based bruises detection on apples using cold excitation thermal images

瘀伤 计算机科学 人工智能 瓶颈 RGB颜色模型 计算机视觉 热的 目标检测 噪音(视频) 模式识别(心理学) 图像(数学) 物理 嵌入式系统 医学 外科 气象学
作者
Peijie Lin,Hua Yang,Shuying Cheng,Feng Guo,Lijin Wang,Yaohai Lin
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:199: 112280-112280 被引量:15
标识
DOI:10.1016/j.postharvbio.2023.112280
摘要

Bruising is one of the key factors that causes postharvest losses, which decreases the economic efficiency of fruit. Nevertheless, the detection of bruises still relies mainly on manual work, which is strongly subjective with long labor time and low efficiency. Accordingly, it is necessary to design an efficient fruit bruise detection approach. Thermal imaging (TI) is a fast and effective nondestructive testing technology. However, the commonly applied thermal excitation TI-based bruise detection may lead to a decrease in the shelf life of the fruit. Therefore, this study uses apple as the research object, introduces cold excitation to improve the sensitivity of bruise detection, and then constructs a simple longwavelength infrared range (7.5–13 µm) TI system to acquire the thermal image of bruised apples. In addition, the low signal-to-noise ratio of thermal images also leads to detection performance degradation. Thus, the YOLOv5s network is applied and improved to achieve better detection. The specific methods are described as follows: (1) Since the thermal images have the problem of duplicated RGB data, group convolution is used to reduce the feature duplication computation. (2) The bottleneck structure of YOLOv5s is replaced by the ghost bottleneck (GB), and the number of bottlenecks is reduced to decrease the computational quantity of extracting redundant features of thermal images. (3) The shrinkage module is inserted into the GB, and the threshold is automatically obtained through two fully connected layers without relevant professional knowledge to eliminate noise in the features that may cause performance degradation. The F2 score, mAP and mAP50 of the proposed model are 97.76%, 86.24% and 98.08%, respectively, which are better than those of YOLOv5s. Moreover, the computation and the FPS of the proposed model are 1.31 GFLOPs and 160, which are 31.95% and 121.21% of those of the YOLOv5s, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉画板发布了新的文献求助10
刚刚
1秒前
汉堡包应助HM采纳,获得10
1秒前
2秒前
李健的小迷弟应助小畅采纳,获得10
2秒前
2秒前
香蕉觅云应助zyd采纳,获得10
2秒前
CodeCraft应助瑶瑶采纳,获得10
2秒前
肥猫发布了新的文献求助10
3秒前
球球发布了新的文献求助10
4秒前
水水水完成签到 ,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
森陌夏栀发布了新的文献求助10
4秒前
123应助雷涵晶采纳,获得10
5秒前
5秒前
Bai_shao完成签到,获得积分10
5秒前
6秒前
Daily发布了新的文献求助10
6秒前
阳佟水蓉完成签到,获得积分10
6秒前
6秒前
英姑应助鲜艳的手链采纳,获得10
7秒前
7秒前
7秒前
8秒前
欣欣完成签到 ,获得积分10
8秒前
香蕉觅云应助龚仕杰采纳,获得10
8秒前
淡淡芷天应助球球采纳,获得10
8秒前
Zhang完成签到,获得积分10
8秒前
邱雪辉完成签到,获得积分10
8秒前
9秒前
隐形曼青应助刘欣采纳,获得10
9秒前
newsl完成签到,获得积分10
9秒前
10秒前
10秒前
隐形曼青应助yy湫采纳,获得10
10秒前
shalom完成签到,获得积分10
10秒前
Hello应助yier采纳,获得10
11秒前
默默发布了新的文献求助10
11秒前
11秒前
浮浮世世发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
One Health Case Studies: Practical Applications of the Transdisciplinary Approach 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5098708
求助须知:如何正确求助?哪些是违规求助? 4310813
关于积分的说明 13432372
捐赠科研通 4138156
什么是DOI,文献DOI怎么找? 2267123
邀请新用户注册赠送积分活动 1270164
关于科研通互助平台的介绍 1206454