Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data

计算机科学 人工智能 卷积神经网络 脑电图 模式识别(心理学) 睡眠(系统调用) 钙显像 非快速眼动睡眠 清醒 眼球运动 机器学习 神经科学 心理学 化学 有机化学 操作系统
作者
Xiaohui Zhang,Eric C. Landsness,Joseph P. Culver,Jin‐Moo Lee,Mark A. Anastasio
标识
DOI:10.1117/12.2649375
摘要

Wide-field calcium imaging (WFCI) with genetically encoded calcium indicators allows spatiotemporal recordings of neuronal activity in preclinical models. When applied to the study of sleep, WFCI data are manually scored into sleep states of wakefulness, non-rapid eye movement (NREM) and REM by use of adjunct electroencephalogram (EEG) and electromyogram (EMG) recordings. However, this process is time-consuming, invasive and suffers from low inter- and intra-rater reliability. To overcome these limitations, an automated sleep state classification method that operates on spatiotemporal WFCI recordings is desired. Previous work that classifies sleep states from WFCI data by use of multiplex visibility graphs and deep learning only leverages shared information derived from average time series across parcellated brain regions, and thus fails to fully explore the spatiotemporal calcium dynamics recorded. In this work, a hybrid network architecture consisting of a convolutional neural network (CNN) to extract spatial features of image frames and a bidirectional long short-term memory network (BiLSTM) with attention mechanism to identify temporal dependencies among different time points was proposed to jointly learn spatial and temporal information from the WFCI sleep data. Nineteen transgenic mice expressing GCaMP6f in excitatory neurons were used for network training and testing. The CNN-BiLSTM achieved a weighted F1-score of 0.84 and Cohen’s κ of 0.64, indicating substantial agreement with EEG/EMG-based human scoring. The gradient-weighted class activation maps were computed to provide deeper insights into the brain regions most relevant to the inference of individual sleep state. This work will enable further investigation of sleep neural activity using WFCI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助vfjvdf采纳,获得10
2秒前
i_jueloa完成签到 ,获得积分10
3秒前
3秒前
4秒前
yiyiyiyiyi//完成签到,获得积分10
4秒前
4秒前
传奇3应助简单的夜绿采纳,获得10
4秒前
5秒前
luanzhaohui完成签到,获得积分10
7秒前
浮游应助比邻星采纳,获得10
7秒前
bkagyin应助默默的树叶采纳,获得10
8秒前
8秒前
9秒前
9秒前
认真的初翠完成签到,获得积分10
9秒前
10秒前
xiaohei发布了新的文献求助10
11秒前
txy关注了科研通微信公众号
12秒前
韩煜发布了新的文献求助10
13秒前
古今奇观完成签到 ,获得积分10
13秒前
Marvel发布了新的文献求助10
13秒前
科研通AI6应助子清采纳,获得10
14秒前
14秒前
15秒前
15秒前
脑洞疼应助lucky采纳,获得10
15秒前
淡定秀发完成签到,获得积分10
16秒前
song_song完成签到,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
uuuu完成签到 ,获得积分10
18秒前
阿湫完成签到,获得积分10
19秒前
脑洞疼应助叫滚滚采纳,获得10
20秒前
21秒前
21秒前
嚯嚯发布了新的文献求助10
22秒前
sian完成签到 ,获得积分10
22秒前
花砸发布了新的文献求助10
22秒前
23秒前
NexusExplorer应助温婉的怀梦采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419355
求助须知:如何正确求助?哪些是违规求助? 4534651
关于积分的说明 14146107
捐赠科研通 4451251
什么是DOI,文献DOI怎么找? 2441667
邀请新用户注册赠送积分活动 1433233
关于科研通互助平台的介绍 1410533