A lightweight network for portable fry counting devices

计算机科学 软件可移植性 箱式计数 初始化 一般化 编码(集合论) 集合(抽象数据类型) 人工智能 实时计算 操作系统 数学 分形维数 分形 数学分析 分形分析 程序设计语言
作者
Weiran Li,Qian Zhu,Hanyu Zhang,Ziyu Xu,Zhenbo Li
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:136: 110140-110140 被引量:13
标识
DOI:10.1016/j.asoc.2023.110140
摘要

Estimating the number of fries plays a critical role in the maintenance of fish breeding, transportation, and the preservation of marine resources in aquaculture. Generally speaking, statistics are recorded manually by fishers and government units. Manual recording is time-consuming and increases the workload of fishers. Compared with traditional physical shunt devices, visual-based algorithms have benefits such as non-restriction of labors, minimal equipment installation, and maintenance costs. However, these methods generally come with massive calculations and model parameters, or poor abilities of aggregation handles and counting precision. This paper proposes a fry counting method named MSENet for portable fry counting devices. Firstly, the lightweight network is designed with simpler parameters (Params: 139.46 kB) for portable embedding. The visualized single-channel fry density maps are predicted by feeding the original images and the number of fries is calculated through integration. Then, the Squeeze-and-Excitation block is utilized to strengthen the features of weighty channels. The model training is refined by hyperparameter studies, the shortened preparation stage enhances the portability. What is more, a fry counting dataset NCAUF and an extra set NCAUF-EX are built for verifications of network generalization. The results demonstrate that the lightweight MSENet outperforms in fry counting with higher precision and competently solves the issue of fry aggregation (MAE: 3.33). The source code and pre-trained models are available at: https://github.com/vranlee/MSENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
物欲横流发布了新的文献求助10
刚刚
Carroe完成签到,获得积分10
1秒前
1秒前
科研通AI5应助PG采纳,获得30
1秒前
hp571发布了新的文献求助10
2秒前
寒冷无色完成签到,获得积分10
2秒前
珂尔维特完成签到,获得积分10
2秒前
JM发布了新的文献求助10
2秒前
LUKW给LUKW的求助进行了留言
3秒前
大美美完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
3秒前
罗YF完成签到,获得积分10
3秒前
syx发布了新的文献求助10
4秒前
Ava应助绵绵饲养手册采纳,获得30
4秒前
三七四十三完成签到,获得积分10
4秒前
liuce0307完成签到,获得积分10
4秒前
5秒前
5秒前
苏杉杉发布了新的文献求助10
5秒前
summer完成签到,获得积分10
6秒前
gzsy完成签到 ,获得积分10
6秒前
7秒前
taster完成签到,获得积分10
7秒前
7秒前
hyx发布了新的文献求助10
7秒前
8秒前
8秒前
小慧儿发布了新的文献求助10
8秒前
9秒前
叶文腾完成签到,获得积分20
9秒前
王三歲完成签到,获得积分10
9秒前
早睡早起的安完成签到,获得积分10
9秒前
烟花应助吲哚好呀采纳,获得200
9秒前
10秒前
meethaha发布了新的文献求助10
10秒前
V_I_G发布了新的文献求助10
10秒前
10秒前
11秒前
热爱生活的小彭完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650