Automated Prognostic Assessment of Endometrial Hyperplasia for Progression Risk Evaluation Using Artificial Intelligence

医学 子宫内膜癌 逻辑回归 增生 子宫内膜增生 组内相关 放射科 病理 癌症 妇科 内科学 临床心理学 心理测量学
作者
Emma Rewcastle,Einar Gudlaugsson,Melinda Lillesand,Ivar Skaland,Jan P. A. Baak,Emiel A. M. Janssen
出处
期刊:Modern Pathology [Elsevier BV]
卷期号:36 (5): 100116-100116 被引量:6
标识
DOI:10.1016/j.modpat.2023.100116
摘要

Endometrial hyperplasia is a precursor to endometrial cancer, characterized by excessive proliferation of glands that is distinguishable from normal endometrium. Current classifications define 2 types of EH, each with a different risk of progression to endometrial cancer. However, these schemes are based on visual assessments and, therefore, subjective, possibly leading to overtreatment or undertreatment. In this study, we developed an automated artificial intelligence tool (ENDOAPP) for the measurement of morphologic and cytologic features of endometrial tissue using the software Visiopharm. The ENDOAPP was used to extract features from whole-slide images of PAN-CK+-stained formalin-fixed paraffin-embedded tissue sections from 388 patients diagnosed with endometrial hyperplasia between 1980 and 2007. Follow-up data were available for all patients (mean = 140 months). The most prognostic features were identified by a logistic regression model and used to assign a low-risk or high-risk progression score. Performance of the ENDOAPP was assessed for the following variables: images from 2 different scanners (Hamamatsu XR and S60) and automated placement of a region of interest versus manual placement by an operator. Then, the performance of the application was compared with that of current classification schemes: WHO94, WHO20, and EIN, and the computerized-morphometric risk classification method: D-score. The most significant prognosticators were percentage stroma and the standard deviation of the lesser diameter of epithelial nuclei. The ENDOAPP had an acceptable discriminative power with an area under the curve of 0.765. Furthermore, strong to moderate agreement was observed between manual operators (intraclass correlation coefficient: 0.828) and scanners (intraclass correlation coefficient: 0.791). Comparison of the prognostic capability of each classification scheme revealed that the ENDOAPP had the highest accuracy of 88%-91% alongside the D-score method (91%). The other classification schemes had an accuracy between 83% and 87%. This study demonstrated the use of computer-aided prognosis to classify progression risk in EH for improved patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
无限的雨梅完成签到 ,获得积分10
2秒前
ppp完成签到,获得积分10
4秒前
CodeCraft应助武雨寒采纳,获得10
5秒前
圆你心安发布了新的文献求助10
5秒前
KD发布了新的文献求助10
5秒前
zhanghao发布了新的文献求助10
6秒前
饼藏发布了新的文献求助10
7秒前
7秒前
7秒前
思源应助一朵采纳,获得10
7秒前
可玩性完成签到 ,获得积分10
7秒前
YY完成签到,获得积分10
8秒前
9秒前
sdsa完成签到,获得积分10
9秒前
10秒前
10秒前
phw发布了新的文献求助10
12秒前
Kayla发布了新的文献求助10
12秒前
12秒前
Felix发布了新的文献求助10
13秒前
13秒前
JamesPei应助yuwen采纳,获得10
14秒前
科研通AI5应助柳白采纳,获得10
14秒前
15秒前
15秒前
noite发布了新的文献求助10
15秒前
zzzz完成签到,获得积分10
16秒前
无聊的怀绿完成签到,获得积分10
16秒前
高贵紫丝发布了新的文献求助10
17秒前
18秒前
19秒前
xuexi发布了新的文献求助10
19秒前
sudor123456完成签到,获得积分10
20秒前
完美世界应助迷人的冰蓝采纳,获得10
21秒前
21秒前
十七发布了新的文献求助10
22秒前
安徒发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528