Automated Prognostic Assessment of Endometrial Hyperplasia for Progression Risk Evaluation Using Artificial Intelligence

医学 子宫内膜癌 逻辑回归 增生 子宫内膜增生 组内相关 放射科 病理 癌症 妇科 内科学 临床心理学 心理测量学
作者
Emma Rewcastle,Einar Gudlaugsson,Melinda Lillesand,Ivar Skaland,Jan P. A. Baak,Emiel A. M. Janssen
出处
期刊:Modern Pathology [Springer Nature]
卷期号:36 (5): 100116-100116 被引量:4
标识
DOI:10.1016/j.modpat.2023.100116
摘要

Endometrial hyperplasia is a precursor to endometrial cancer, characterized by excessive proliferation of glands that is distinguishable from normal endometrium. Current classifications define 2 types of EH, each with a different risk of progression to endometrial cancer. However, these schemes are based on visual assessments and, therefore, subjective, possibly leading to overtreatment or undertreatment. In this study, we developed an automated artificial intelligence tool (ENDOAPP) for the measurement of morphologic and cytologic features of endometrial tissue using the software Visiopharm. The ENDOAPP was used to extract features from whole-slide images of PAN-CK+-stained formalin-fixed paraffin-embedded tissue sections from 388 patients diagnosed with endometrial hyperplasia between 1980 and 2007. Follow-up data were available for all patients (mean = 140 months). The most prognostic features were identified by a logistic regression model and used to assign a low-risk or high-risk progression score. Performance of the ENDOAPP was assessed for the following variables: images from 2 different scanners (Hamamatsu XR and S60) and automated placement of a region of interest versus manual placement by an operator. Then, the performance of the application was compared with that of current classification schemes: WHO94, WHO20, and EIN, and the computerized-morphometric risk classification method: D-score. The most significant prognosticators were percentage stroma and the standard deviation of the lesser diameter of epithelial nuclei. The ENDOAPP had an acceptable discriminative power with an area under the curve of 0.765. Furthermore, strong to moderate agreement was observed between manual operators (intraclass correlation coefficient: 0.828) and scanners (intraclass correlation coefficient: 0.791). Comparison of the prognostic capability of each classification scheme revealed that the ENDOAPP had the highest accuracy of 88%-91% alongside the D-score method (91%). The other classification schemes had an accuracy between 83% and 87%. This study demonstrated the use of computer-aided prognosis to classify progression risk in EH for improved patient treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kc135完成签到,获得积分10
1秒前
晓千晨发布了新的文献求助10
1秒前
搜集达人应助都能进采纳,获得10
1秒前
科研通AI2S应助南烛采纳,获得10
2秒前
2秒前
小蘑菇应助毛毛弟采纳,获得10
3秒前
huangbing123发布了新的文献求助10
4秒前
4秒前
飞天三叉戟应助yanan采纳,获得20
7秒前
8秒前
12Yohann完成签到,获得积分10
8秒前
ll发布了新的文献求助10
8秒前
奔跑的青霉素完成签到 ,获得积分10
10秒前
Nini1203完成签到,获得积分10
10秒前
任性的梦菲完成签到,获得积分10
11秒前
乐乐应助古月采纳,获得10
12秒前
爆米花应助逃亡的小狗采纳,获得10
14秒前
14秒前
20秒前
SCISSH完成签到 ,获得积分10
20秒前
酷炫若枫完成签到,获得积分10
21秒前
22秒前
热情铭完成签到 ,获得积分10
23秒前
南烛发布了新的文献求助10
23秒前
23秒前
研友_VZG7GZ应助学无止境采纳,获得30
24秒前
尊敬的夏槐完成签到,获得积分10
24秒前
好奇宝宝发布了新的文献求助10
26秒前
Charlie完成签到,获得积分10
27秒前
明亮无颜发布了新的文献求助30
27秒前
一路狂奔等不了完成签到 ,获得积分10
28秒前
浔城游侠完成签到,获得积分10
28秒前
飞天三叉戟给yanan的求助进行了留言
28秒前
南楼小阁主完成签到,获得积分10
29秒前
30秒前
上官若男应助choyee采纳,获得30
31秒前
买菜市民熊先生完成签到,获得积分10
34秒前
执着牛青完成签到,获得积分10
36秒前
snowpie完成签到 ,获得积分10
39秒前
把心放在肚里应助msy采纳,获得10
40秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461092
求助须知:如何正确求助?哪些是违规求助? 3054904
关于积分的说明 9045252
捐赠科研通 2744780
什么是DOI,文献DOI怎么找? 1505651
科研通“疑难数据库(出版商)”最低求助积分说明 695763
邀请新用户注册赠送积分活动 695173