Global research of artificial intelligence in eyelid diseases: A bibliometric analysis

文献计量学 眼睑 数据科学 计算机科学 医学 图书馆学 眼科
作者
X. Zhang,Ziying Zhou,Yilu Cai,Andrzej Grzybowski,Juan Ye,Lixia Lou
出处
期刊:Heliyon [Elsevier]
卷期号:10 (14): e34979-e34979
标识
DOI:10.1016/j.heliyon.2024.e34979
摘要

PurposeTo generate an overview of global research on artificial intelligence (AI) in eyelid diseases using a bibliometric approach.MethodsAll publications related to AI in eyelid diseases from 1900 to 2023 were retrieved from the Web of Science (WoS) Core Collection database. After manual screening, 98 publications published between 2000 and 2023 were finally included. We analyzed the annual trend of publication and citation count, productivity and co-authorship of countries/territories and institutions, research domain, source journal, co-occurrence and evolution of the keywords and co-citation and clustering of the references, using the analytic tool of the WoS, VOSviewer, Wordcloud Python package and CiteSpace.ResultsBy analyzing a total of 98 relevant publications, we detected that this field had continuously developed over the past two decades and had entered a phase of rapid development in the last three years. Among these countries/territories and institutions contributing to this field, China was the most productive country and had the most institutions with high productivity, while USA was the most active in collaborating with others. The most popular research domains was Ophthalmology and the most productive journals were Ocular Surface. The co-occurrence network of keywords could be classified into 3 clusters respectively concerned about blepharoptosis, meibomian gland dysfunction and blepharospasm. The evolution of research hotspots is from clinical features to clinical scenarios and from image processing to deep learning. In the clustering analysis of co-cited reference network, cluster "0# deep learning" was the largest and latest, and cluster "#5 meibomian glands visibility assessment" existed for the longest time.ConclusionsAlthough the research of AI in eyelid diseases has rapidly developed in the last three years, there are still gaps in this area. Our findings provide researchers with a better understanding of the development of the field and a reference for future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5433完成签到,获得积分10
刚刚
刚刚
能干的熊猫完成签到,获得积分10
刚刚
深情安青应助大鹅采纳,获得10
1秒前
落山姬完成签到,获得积分10
2秒前
dddd完成签到,获得积分10
3秒前
大模型应助着急的盼山采纳,获得10
3秒前
3秒前
4秒前
瑞瑞发布了新的文献求助10
4秒前
飘逸踏歌发布了新的文献求助10
5秒前
5秒前
5秒前
Hello应助小鹿采纳,获得10
5秒前
九月完成签到,获得积分10
7秒前
8秒前
万能图书馆应助阿航采纳,获得10
8秒前
10秒前
生动的导师完成签到,获得积分10
10秒前
11秒前
Penzias发布了新的文献求助10
11秒前
李婷婷完成签到,获得积分10
11秒前
sissi完成签到,获得积分10
12秒前
jjkkee发布了新的文献求助10
13秒前
13秒前
wnll发布了新的文献求助10
13秒前
搜集达人应助hyw010724采纳,获得30
14秒前
yao完成签到,获得积分10
16秒前
吱吱吱吱发布了新的文献求助10
16秒前
17秒前
隐形的如雪给云飞扬的求助进行了留言
17秒前
万能图书馆应助奋斗的萝采纳,获得10
18秒前
卡布奇诺i发布了新的文献求助10
18秒前
完美世界应助jjkkee采纳,获得10
18秒前
调研昵称发布了新的文献求助30
20秒前
哈哈发布了新的文献求助10
20秒前
21秒前
22秒前
mhl11应助GaryW采纳,获得10
22秒前
22秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3341041
求助须知:如何正确求助?哪些是违规求助? 2968852
关于积分的说明 8635308
捐赠科研通 2648378
什么是DOI,文献DOI怎么找? 1450137
科研通“疑难数据库(出版商)”最低求助积分说明 671738
邀请新用户注册赠送积分活动 660852