亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Global research of artificial intelligence in eyelid diseases: A bibliometric analysis

文献计量学 眼睑 数据科学 计算机科学 医学 图书馆学 眼科
作者
X. Zhang,Ziying Zhou,Yilu Cai,Andrzej Grzybowski,Juan Ye,Lixia Lou
出处
期刊:Heliyon [Elsevier]
卷期号:10 (14): e34979-e34979
标识
DOI:10.1016/j.heliyon.2024.e34979
摘要

PurposeTo generate an overview of global research on artificial intelligence (AI) in eyelid diseases using a bibliometric approach.MethodsAll publications related to AI in eyelid diseases from 1900 to 2023 were retrieved from the Web of Science (WoS) Core Collection database. After manual screening, 98 publications published between 2000 and 2023 were finally included. We analyzed the annual trend of publication and citation count, productivity and co-authorship of countries/territories and institutions, research domain, source journal, co-occurrence and evolution of the keywords and co-citation and clustering of the references, using the analytic tool of the WoS, VOSviewer, Wordcloud Python package and CiteSpace.ResultsBy analyzing a total of 98 relevant publications, we detected that this field had continuously developed over the past two decades and had entered a phase of rapid development in the last three years. Among these countries/territories and institutions contributing to this field, China was the most productive country and had the most institutions with high productivity, while USA was the most active in collaborating with others. The most popular research domains was Ophthalmology and the most productive journals were Ocular Surface. The co-occurrence network of keywords could be classified into 3 clusters respectively concerned about blepharoptosis, meibomian gland dysfunction and blepharospasm. The evolution of research hotspots is from clinical features to clinical scenarios and from image processing to deep learning. In the clustering analysis of co-cited reference network, cluster "0# deep learning" was the largest and latest, and cluster "#5 meibomian glands visibility assessment" existed for the longest time.ConclusionsAlthough the research of AI in eyelid diseases has rapidly developed in the last three years, there are still gaps in this area. Our findings provide researchers with a better understanding of the development of the field and a reference for future research directions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
ranying完成签到,获得积分10
38秒前
1分钟前
小陈发布了新的文献求助10
1分钟前
chunlily完成签到,获得积分10
1分钟前
国服狗狗酱完成签到 ,获得积分10
1分钟前
简单的元珊完成签到 ,获得积分10
1分钟前
上上签完成签到,获得积分10
1分钟前
小陈完成签到,获得积分10
1分钟前
1分钟前
JOJO发布了新的文献求助10
2分钟前
爱思考的小笨笨完成签到,获得积分10
2分钟前
breeze2000完成签到 ,获得积分10
2分钟前
nikg完成签到,获得积分10
2分钟前
2分钟前
开朗醉波发布了新的文献求助10
2分钟前
酷波er应助开朗醉波采纳,获得10
2分钟前
老戎完成签到 ,获得积分10
3分钟前
大个应助zzz采纳,获得10
3分钟前
乐乐应助AliEmbark采纳,获得10
4分钟前
5555完成签到,获得积分10
4分钟前
4分钟前
落寞凌柏发布了新的文献求助10
4分钟前
落寞凌柏完成签到,获得积分10
4分钟前
4分钟前
4分钟前
zzz发布了新的文献求助10
4分钟前
开朗醉波发布了新的文献求助10
5分钟前
5分钟前
雯小瑾发布了新的文献求助10
5分钟前
5分钟前
JOJO完成签到,获得积分10
5分钟前
5分钟前
JOJO发布了新的文献求助10
5分钟前
6分钟前
AliEmbark发布了新的文献求助10
6分钟前
wwwwwei完成签到,获得积分10
6分钟前
lod完成签到,获得积分10
8分钟前
Owen应助nikg采纳,获得10
9分钟前
胡可完成签到 ,获得积分10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Mastering Prompt Engineering: A Complete Guide 200
Elastography for characterization of focal liver lesions: current evidence and future perspectives 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5870905
求助须知:如何正确求助?哪些是违规求助? 6469699
关于积分的说明 15665185
捐赠科研通 4987184
什么是DOI,文献DOI怎么找? 2689197
邀请新用户注册赠送积分活动 1631563
关于科研通互助平台的介绍 1589561