文献计量学
眼睑
数据科学
计算机科学
医学
图书馆学
眼科
作者
X. Zhang,Ziying Zhou,Yilu Cai,Andrzej Grzybowski,Juan Ye,Lixia Lou
出处
期刊:Heliyon
[Elsevier]
日期:2024-07-01
卷期号:10 (14): e34979-e34979
标识
DOI:10.1016/j.heliyon.2024.e34979
摘要
PurposeTo generate an overview of global research on artificial intelligence (AI) in eyelid diseases using a bibliometric approach.MethodsAll publications related to AI in eyelid diseases from 1900 to 2023 were retrieved from the Web of Science (WoS) Core Collection database. After manual screening, 98 publications published between 2000 and 2023 were finally included. We analyzed the annual trend of publication and citation count, productivity and co-authorship of countries/territories and institutions, research domain, source journal, co-occurrence and evolution of the keywords and co-citation and clustering of the references, using the analytic tool of the WoS, VOSviewer, Wordcloud Python package and CiteSpace.ResultsBy analyzing a total of 98 relevant publications, we detected that this field had continuously developed over the past two decades and had entered a phase of rapid development in the last three years. Among these countries/territories and institutions contributing to this field, China was the most productive country and had the most institutions with high productivity, while USA was the most active in collaborating with others. The most popular research domains was Ophthalmology and the most productive journals were Ocular Surface. The co-occurrence network of keywords could be classified into 3 clusters respectively concerned about blepharoptosis, meibomian gland dysfunction and blepharospasm. The evolution of research hotspots is from clinical features to clinical scenarios and from image processing to deep learning. In the clustering analysis of co-cited reference network, cluster "0# deep learning" was the largest and latest, and cluster "#5 meibomian glands visibility assessment" existed for the longest time.ConclusionsAlthough the research of AI in eyelid diseases has rapidly developed in the last three years, there are still gaps in this area. Our findings provide researchers with a better understanding of the development of the field and a reference for future research directions.
科研通智能强力驱动
Strongly Powered by AbleSci AI