Global research of artificial intelligence in eyelid diseases: A bibliometric analysis

文献计量学 眼睑 数据科学 计算机科学 医学 图书馆学 眼科
作者
X. Zhang,Ziying Zhou,Yilu Cai,Andrzej Grzybowski,Juan Ye,Lixia Lou
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (14): e34979-e34979
标识
DOI:10.1016/j.heliyon.2024.e34979
摘要

PurposeTo generate an overview of global research on artificial intelligence (AI) in eyelid diseases using a bibliometric approach.MethodsAll publications related to AI in eyelid diseases from 1900 to 2023 were retrieved from the Web of Science (WoS) Core Collection database. After manual screening, 98 publications published between 2000 and 2023 were finally included. We analyzed the annual trend of publication and citation count, productivity and co-authorship of countries/territories and institutions, research domain, source journal, co-occurrence and evolution of the keywords and co-citation and clustering of the references, using the analytic tool of the WoS, VOSviewer, Wordcloud Python package and CiteSpace.ResultsBy analyzing a total of 98 relevant publications, we detected that this field had continuously developed over the past two decades and had entered a phase of rapid development in the last three years. Among these countries/territories and institutions contributing to this field, China was the most productive country and had the most institutions with high productivity, while USA was the most active in collaborating with others. The most popular research domains was Ophthalmology and the most productive journals were Ocular Surface. The co-occurrence network of keywords could be classified into 3 clusters respectively concerned about blepharoptosis, meibomian gland dysfunction and blepharospasm. The evolution of research hotspots is from clinical features to clinical scenarios and from image processing to deep learning. In the clustering analysis of co-cited reference network, cluster "0# deep learning" was the largest and latest, and cluster "#5 meibomian glands visibility assessment" existed for the longest time.ConclusionsAlthough the research of AI in eyelid diseases has rapidly developed in the last three years, there are still gaps in this area. Our findings provide researchers with a better understanding of the development of the field and a reference for future research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助彳亍采纳,获得10
2秒前
科研通AI5应助柏亦采纳,获得10
2秒前
张奇关注了科研通微信公众号
3秒前
3秒前
4秒前
axn完成签到,获得积分10
5秒前
李伟峰完成签到,获得积分10
6秒前
ZT发布了新的文献求助10
7秒前
孙燕应助涛涛正在努力中采纳,获得10
8秒前
开元完成签到,获得积分10
9秒前
Akim应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
SHAO应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
SHAO应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
SHAO应助科研通管家采纳,获得10
10秒前
淡淡的香完成签到,获得积分10
12秒前
15秒前
周立成完成签到,获得积分10
16秒前
思源应助jinjin采纳,获得10
18秒前
20秒前
20秒前
24秒前
Owen应助wang_qi采纳,获得10
26秒前
所所应助Rick采纳,获得10
29秒前
29秒前
彳亍发布了新的文献求助10
29秒前
35秒前
35秒前
醉熏的鑫发布了新的文献求助10
38秒前
梁子奥里给完成签到,获得积分10
38秒前
jingxian发布了新的文献求助10
40秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993151
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264447
捐赠科研通 3273745
什么是DOI,文献DOI怎么找? 1806151
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652