The universality of the machine: labour process theory and the absorption of the skills and knowledge of labour into capital

普遍性(动力系统) 劳动经济学 经济 物理 凝聚态物理
作者
James Steinhoff
出处
期刊:Work in the global economy [Bristol University Press]
卷期号:: 1-20
标识
DOI:10.1332/27324176y2024d000000025
摘要

This article contends that deskilling is best understood not as a distinct phenomenon, but as a component of a process Marx (1993: 694) called ‘absorption’. Absorption involves not only the extraction of capacities from labour but also their implementation in machines. The article reads Braverman’s (1998) analysis of Taylorism as a demonstration of how absorption entails a specific labour process of its own, which I call the absorption process. The nature of the absorption process is contingent on many social factors. This article focuses on a technical factor: the particular machines used to implement captured skills and knowledge, called here the infrastructure of absorption. Since technological capacities are ever-evolving under capital due to the continual revolutionizing of the means of production, infrastructures of absorption change over time and this necessitates new absorption processes. Braverman (1998: 132) pointed to a qualitative change in absorption with the digital computer, which he described in terms of a new ‘universality of the machine’. While Braverman rightly pointed out the computer as a novel infrastructure, he did not discern qualitative changes to the absorption process, seeing instead the extension of Taylorist processes of capture of knowledge and skill. I contend that a qualitative shift has become apparent since the rise of machine learning in around 2015. Machine learning enables a different absorption process of emergence which does not require the codification of captured knowledge. Much labour process theory (LPT) (and adjacent) research presumes that deskilling and automation operate in terms of a process of capture, however, I show that emergence presents qualitatively different means for both. I suggest that the infrastructure of machine learning presents the possibility of task-agnostic automation .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
小李博士发布了新的文献求助10
3秒前
yuM发布了新的文献求助50
3秒前
3秒前
wubobo发布了新的文献求助10
4秒前
4秒前
5秒前
顾矜应助芮明霞采纳,获得10
6秒前
正直的夏真完成签到 ,获得积分10
8秒前
8秒前
Jasper应助合适成风采纳,获得10
8秒前
复杂的海完成签到,获得积分10
12秒前
berry完成签到,获得积分10
12秒前
yydragen应助yuM采纳,获得40
12秒前
仁爱的乐枫完成签到,获得积分20
12秒前
13秒前
田様应助罗白翠采纳,获得10
13秒前
14秒前
柚子发布了新的文献求助10
17秒前
墩墩应助无限的信封采纳,获得10
18秒前
19秒前
含蓄虔纹发布了新的文献求助10
19秒前
24秒前
江小白完成签到,获得积分0
25秒前
小可爱521应助宗友绿采纳,获得50
25秒前
像昨天一样晚安完成签到,获得积分10
27秒前
胖大海完成签到,获得积分20
27秒前
Nnn完成签到 ,获得积分10
27秒前
合适成风发布了新的文献求助10
28秒前
含蓄虔纹完成签到,获得积分20
29秒前
30秒前
Owen应助薯薯鼠鼠采纳,获得10
30秒前
32秒前
天宝完成签到,获得积分10
34秒前
姜姜关注了科研通微信公众号
34秒前
王婷甄完成签到,获得积分10
35秒前
柚子完成签到,获得积分10
35秒前
Sonder完成签到,获得积分20
35秒前
万能图书馆应助风清扬采纳,获得10
36秒前
JamesPei应助wei采纳,获得10
40秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962850
求助须知:如何正确求助?哪些是违规求助? 3508775
关于积分的说明 11142938
捐赠科研通 3241643
什么是DOI,文献DOI怎么找? 1791625
邀请新用户注册赠送积分活动 872998
科研通“疑难数据库(出版商)”最低求助积分说明 803571