已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The universality of the machine: labour process theory and the absorption of the skills and knowledge of labour into capital

普遍性(动力系统) 劳动经济学 经济 物理 凝聚态物理
作者
James Steinhoff
出处
期刊:Work in the global economy [Bristol University Press]
卷期号:: 1-20
标识
DOI:10.1332/27324176y2024d000000025
摘要

This article contends that deskilling is best understood not as a distinct phenomenon, but as a component of a process Marx (1993: 694) called ‘absorption’. Absorption involves not only the extraction of capacities from labour but also their implementation in machines. The article reads Braverman’s (1998) analysis of Taylorism as a demonstration of how absorption entails a specific labour process of its own, which I call the absorption process. The nature of the absorption process is contingent on many social factors. This article focuses on a technical factor: the particular machines used to implement captured skills and knowledge, called here the infrastructure of absorption. Since technological capacities are ever-evolving under capital due to the continual revolutionizing of the means of production, infrastructures of absorption change over time and this necessitates new absorption processes. Braverman (1998: 132) pointed to a qualitative change in absorption with the digital computer, which he described in terms of a new ‘universality of the machine’. While Braverman rightly pointed out the computer as a novel infrastructure, he did not discern qualitative changes to the absorption process, seeing instead the extension of Taylorist processes of capture of knowledge and skill. I contend that a qualitative shift has become apparent since the rise of machine learning in around 2015. Machine learning enables a different absorption process of emergence which does not require the codification of captured knowledge. Much labour process theory (LPT) (and adjacent) research presumes that deskilling and automation operate in terms of a process of capture, however, I show that emergence presents qualitatively different means for both. I suggest that the infrastructure of machine learning presents the possibility of task-agnostic automation .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
快乐滑板应助自然的宝贝采纳,获得10
4秒前
拉长的绿柏完成签到 ,获得积分10
5秒前
chen完成签到,获得积分10
5秒前
7秒前
开心夜云完成签到,获得积分10
7秒前
因一发布了新的文献求助10
7秒前
ukulele117发布了新的文献求助10
9秒前
10秒前
xjx完成签到,获得积分20
11秒前
发仔发布了新的文献求助10
12秒前
lx发布了新的文献求助10
14秒前
852应助111采纳,获得10
14秒前
呼呼呼完成签到,获得积分10
15秒前
Qingyong21应助朵啦诶萌采纳,获得30
15秒前
孙微祥完成签到,获得积分10
16秒前
Lucas应助Superg采纳,获得10
16秒前
17秒前
搞怪水池完成签到 ,获得积分10
17秒前
17秒前
夹心发布了新的文献求助10
17秒前
麦地娜发布了新的文献求助10
18秒前
可爱的函函应助nenoaowu采纳,获得30
19秒前
Singularity应助飘逸凌柏采纳,获得10
19秒前
20秒前
Dragon完成签到 ,获得积分10
21秒前
WLing32发布了新的文献求助30
22秒前
Ting发布了新的文献求助10
22秒前
开放诗筠完成签到,获得积分20
22秒前
23秒前
23秒前
大个应助夹心采纳,获得30
23秒前
24秒前
26秒前
酷波er应助xjx采纳,获得30
26秒前
26秒前
111发布了新的文献求助10
27秒前
繁荣的青旋完成签到 ,获得积分10
27秒前
研友_Z72Ydn完成签到 ,获得积分10
28秒前
开放诗筠发布了新的文献求助30
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Crystal structures of UP2, UAs2, UAsS, and UAsSe in the pressure range up to 60 GPa 570
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466595
求助须知:如何正确求助?哪些是违规求助? 3059389
关于积分的说明 9066123
捐赠科研通 2749855
什么是DOI,文献DOI怎么找? 1508739
科研通“疑难数据库(出版商)”最低求助积分说明 697030
邀请新用户注册赠送积分活动 696873