亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A hierarchical blockchain-enabled distributed federated learning system with model-contribution based rewarding

计算机科学 吞吐量 分布式计算 声誉 机制(生物学) 块链 激励 计算机安全 无线 社会科学 电信 认识论 哲学 社会学 经济 微观经济学
作者
Haibo Wang,Hongwei Gao,Teng Ma,Chong Li,Jing Tao
出处
期刊:Digital Communications and Networks [KeAi]
被引量:4
标识
DOI:10.1016/j.dcan.2024.07.002
摘要

Distributed Federated Learning (DFL) technology enables participants to cooperatively train a shared model while preserving the privacy of their local data sets, making it a desirable solution for decentralized and privacy-preserving Web3 scenarios. However, DFL faces incentive and security challenges in the decentralized framework. To address these issues, this paper presents a Hierarchical Blockchain-enabled DFL (HBDFL) system, which provides a generic solution framework for the DFL-related applications. The proposed system consists of four major components, including a model contribution-based reward mechanism, a Proof of Elapsed Time and Accuracy (PoETA) consensus algorithm, a Distributed Reputation-based Verification Mechanism (DRTM) and an Accuracy-Dependent Throughput Management (ADTM) mechanism. The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets, while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput. The DRTM improves the system efficiency in consensus, and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy. The performance of the proposed HBDFL system is evaluated by numerical simulations, which show that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
19秒前
22秒前
量子星尘发布了新的文献求助10
29秒前
令和完成签到 ,获得积分10
46秒前
47秒前
所所应助Dreamer.采纳,获得10
57秒前
小白加油完成签到 ,获得积分10
1分钟前
2分钟前
守一完成签到,获得积分10
2分钟前
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
3分钟前
量子星尘发布了新的文献求助150
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
打打应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
4分钟前
慕青应助Wei采纳,获得10
4分钟前
4分钟前
Virtual举报可靠的绝音求助涉嫌违规
5分钟前
yyds完成签到,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
柯语雪完成签到 ,获得积分10
5分钟前
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
所所应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
吴彦祖发布了新的文献求助10
6分钟前
6分钟前
7分钟前
馆长应助科研通管家采纳,获得10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
8分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595839
求助须知:如何正确求助?哪些是违规求助? 4008067
关于积分的说明 12408789
捐赠科研通 3686828
什么是DOI,文献DOI怎么找? 2032082
邀请新用户注册赠送积分活动 1065326
科研通“疑难数据库(出版商)”最低求助积分说明 950651