A hierarchical blockchain-enabled distributed federated learning system with model-contribution based rewarding

计算机科学 吞吐量 分布式计算 声誉 机制(生物学) 块链 激励 计算机安全 无线 电信 社会科学 哲学 认识论 社会学 经济 微观经济学
作者
Haibo Wang,Hongwei Gao,Teng Ma,Chong Li,Jing Tao
出处
期刊:Digital Communications and Networks [Elsevier]
被引量:4
标识
DOI:10.1016/j.dcan.2024.07.002
摘要

Distributed Federated Learning (DFL) technology enables participants to cooperatively train a shared model while preserving the privacy of their local data sets, making it a desirable solution for decentralized and privacy-preserving Web3 scenarios. However, DFL faces incentive and security challenges in the decentralized framework. To address these issues, this paper presents a Hierarchical Blockchain-enabled DFL (HBDFL) system, which provides a generic solution framework for the DFL-related applications. The proposed system consists of four major components, including a model contribution-based reward mechanism, a Proof of Elapsed Time and Accuracy (PoETA) consensus algorithm, a Distributed Reputation-based Verification Mechanism (DRTM) and an Accuracy-Dependent Throughput Management (ADTM) mechanism. The model contribution-based rewarding mechanism incentivizes network nodes to train models with their local datasets, while the PoETA consensus algorithm optimizes the tradeoff between the shared model accuracy and system throughput. The DRTM improves the system efficiency in consensus, and the ADTM mechanism guarantees that the throughput performance remains within a predefined range while improving the shared model accuracy. The performance of the proposed HBDFL system is evaluated by numerical simulations, which show that the system improves the accuracy of the shared model while maintaining high throughput and ensuring security.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yr发布了新的文献求助10
2秒前
3秒前
微笑翠桃发布了新的文献求助10
6秒前
6秒前
马佳音完成签到 ,获得积分10
7秒前
在水一方应助Eon采纳,获得10
7秒前
TB123发布了新的文献求助10
7秒前
9秒前
JHL完成签到 ,获得积分10
9秒前
11秒前
11秒前
黎是叻熠黎完成签到,获得积分10
12秒前
每天必补一科完成签到,获得积分10
12秒前
花生完成签到,获得积分10
13秒前
mufcyang完成签到,获得积分10
13秒前
14秒前
缪缪发布了新的文献求助10
15秒前
15秒前
风清扬发布了新的文献求助10
16秒前
甜美乘云完成签到,获得积分10
17秒前
万能图书馆应助嘿嘿采纳,获得10
17秒前
19秒前
19秒前
xuxin完成签到 ,获得积分10
20秒前
大模型应助温柔柜子采纳,获得10
20秒前
啦啦啦完成签到,获得积分10
20秒前
易点邦发布了新的文献求助10
21秒前
21秒前
yyymmm完成签到,获得积分10
23秒前
Anna完成签到 ,获得积分10
24秒前
25秒前
26秒前
26秒前
26秒前
26秒前
小西完成签到 ,获得积分0
26秒前
科目三应助黄超采纳,获得10
26秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714