Imaginary-Connected Embedding in Complex Space for Unseen Attribute-Object Discrimination

嵌入 想象中的 人工智能 对象(语法) 空格(标点符号) 计算机科学 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉 数学 心理学 操作系统 心理治疗师
作者
Chenyi Jiang,Shidong Wang,Yang Long,Zechao Li,Haofeng Zhang,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2024.3487631
摘要

Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of seen primitives. Prior studies have attempted to either learn primitives individually (non-connected) or establish dependencies among them in the composition (fully-connected). In contrast, human comprehension of composition diverges from the aforementioned methods as humans possess the ability to make composition-aware adaptation for these primitives, instead of inferring them rigidly through the aforementioned methods. However, developing a comprehension of compositions akin to human cognition proves challenging within the confines of real space. This arises from the limitation of real-space-based methods, which often categorize attributes, objects, and compositions using three independent measures, without establishing a direct dynamic connection. To tackle this challenge, we expand the CZSL distance metric scheme to encompass complex spaces to unify the independent measures, and we establish an imaginary-connected embedding in complex space to model human understanding of attributes. To achieve this representation, we introduce an innovative visual bias-based attribute extraction module that selectively extracts attributes based on object prototypes. As a result, we are able to incorporate phase information in training and inference, serving as a metric for attribute-object dependencies while preserving the independent acquisition of primitives. We evaluate the effectiveness of our proposed approach on three benchmark datasets, illustrating its superiority compared to baseline methods. Our code is available at https://github.com/LanchJL/IMAX.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ping发布了新的文献求助20
刚刚
1秒前
2秒前
2秒前
caicifeng发布了新的文献求助10
2秒前
myp完成签到,获得积分10
2秒前
2秒前
3秒前
凯德尼给凯德尼的求助进行了留言
4秒前
zwy109完成签到 ,获得积分10
4秒前
4秒前
4秒前
5秒前
5秒前
butaishao发布了新的文献求助10
6秒前
6秒前
单纯的猫咪完成签到,获得积分10
6秒前
7秒前
研友_8KX15L发布了新的文献求助30
7秒前
yang发布了新的文献求助10
8秒前
111发布了新的文献求助10
8秒前
8秒前
8秒前
隐形曼青应助嘎嘎嘎嘎采纳,获得10
8秒前
在水一方应助udbjn123采纳,获得10
9秒前
9秒前
赘婿应助caicifeng采纳,获得10
9秒前
zz发布了新的文献求助10
10秒前
万能图书馆应助谦让香菇采纳,获得10
10秒前
大个应助lllll采纳,获得10
10秒前
Kumple发布了新的文献求助10
11秒前
狂奔的翔发布了新的文献求助10
11秒前
不配.应助折木浮华采纳,获得20
11秒前
ping完成签到,获得积分10
11秒前
YOWIE发布了新的文献求助10
11秒前
12秒前
HUI完成签到,获得积分10
13秒前
轩少的完成签到 ,获得积分10
14秒前
SciGPT应助顺心的水之采纳,获得10
15秒前
传奇3应助顺心的水之采纳,获得10
15秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
中国百部新生物碱的化学研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3179114
求助须知:如何正确求助?哪些是违规求助? 2829928
关于积分的说明 7973935
捐赠科研通 2491180
什么是DOI,文献DOI怎么找? 1328450
科研通“疑难数据库(出版商)”最低求助积分说明 635438
版权声明 602910