Imaginary-Connected Embedding in Complex Space for Unseen Attribute-Object Discrimination

嵌入 想象中的 人工智能 对象(语法) 空格(标点符号) 计算机科学 视觉对象识别的认知神经科学 模式识别(心理学) 计算机视觉 数学 心理学 心理治疗师 操作系统
作者
Chenyi Jiang,Shidong Wang,Yang Long,Zechao Li,Haofeng Zhang,Ling Shao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:1
标识
DOI:10.1109/tpami.2024.3487631
摘要

Compositional Zero-Shot Learning (CZSL) aims to recognize novel compositions of seen primitives. Prior studies have attempted to either learn primitives individually (non-connected) or establish dependencies among them in the composition (fully-connected). In contrast, human comprehension of composition diverges from the aforementioned methods as humans possess the ability to make composition-aware adaptation for these primitives, instead of inferring them rigidly through the aforementioned methods. However, developing a comprehension of compositions akin to human cognition proves challenging within the confines of real space. This arises from the limitation of real-space-based methods, which often categorize attributes, objects, and compositions using three independent measures, without establishing a direct dynamic connection. To tackle this challenge, we expand the CZSL distance metric scheme to encompass complex spaces to unify the independent measures, and we establish an imaginary-connected embedding in complex space to model human understanding of attributes. To achieve this representation, we introduce an innovative visual bias-based attribute extraction module that selectively extracts attributes based on object prototypes. As a result, we are able to incorporate phase information in training and inference, serving as a metric for attribute-object dependencies while preserving the independent acquisition of primitives. We evaluate the effectiveness of our proposed approach on three benchmark datasets, illustrating its superiority compared to baseline methods. Our code is available at https://github.com/LanchJL/IMAX.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
盏盏应助朴实的映秋采纳,获得10
2秒前
xu完成签到,获得积分10
3秒前
花生糕完成签到,获得积分10
4秒前
4秒前
超速也文章完成签到,获得积分10
5秒前
month完成签到,获得积分10
6秒前
qianyuan发布了新的文献求助10
8秒前
彭于晏应助雪莉采纳,获得10
8秒前
9秒前
等待断秋完成签到,获得积分10
10秒前
10秒前
10秒前
AA简单男孩完成签到,获得积分10
11秒前
12秒前
临川发布了新的文献求助40
14秒前
不吃香菜完成签到,获得积分10
14秒前
14秒前
隐形曼青应助6666采纳,获得30
16秒前
田様应助缥缈老九采纳,获得10
17秒前
善学以致用应助凡`采纳,获得10
17秒前
18秒前
18秒前
打打应助不吃香菜采纳,获得30
18秒前
19秒前
任性的半仙完成签到,获得积分10
19秒前
滴滴答答发布了新的文献求助10
20秒前
21秒前
22秒前
谔谔发布了新的文献求助20
23秒前
demon王完成签到,获得积分10
23秒前
456发布了新的文献求助10
24秒前
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296703
求助须知:如何正确求助?哪些是违规求助? 4445819
关于积分的说明 13837462
捐赠科研通 4330808
什么是DOI,文献DOI怎么找? 2377291
邀请新用户注册赠送积分活动 1372608
关于科研通互助平台的介绍 1338052