Genotyping Error Detection and Customised Filtration for SNP Datasets

生物 SNP公司 基因分型 单核苷酸多态性 统计 基因型 样本量测定 SNP基因分型 遗传学 数学 基因
作者
Noa Yaffa Kan‐Lingwood,Liran Sagi,Shahar Mazie,Naama Shahar,Lilith Zecherle Bitton,Alan R. Templeton,Daniel I. Rubenstein,Amos Bouskila,Shirli Bar‐David
出处
期刊:Molecular Ecology Resources [Wiley]
标识
DOI:10.1111/1755-0998.14033
摘要

ABSTRACT A major challenge in analysing single‐nucleotide polymorphism (SNP) genotype datasets is detecting and filtering errors that bias analyses and misinterpret ecological and evolutionary processes. Here, we present a comprehensive method to estimate and minimise genotyping error rates (deviations from the ‘true’ genotype) in any SNP datasets using triplicates (three repeats of the same sample) in a four‐step filtration pipeline. The approach involves: (1) SNP filtering by missing data; (2) SNP filtering by error rates; (3) sample filtering by missing data and (4) detection of recaptured individuals by using estimated SNP error rates. The modular pipeline is provided in an R script that allows customised adjustments. We demonstrate the applicability of the method using non‐invasive sampling from the Asiatic wild ass ( Equus hemionus ) population in Israel. We genotyped 756 samples using 625 SNPs, of which 255 were triplicates of 85 samples. The average SNP error rate, calculated based on the number of mismatching genotypes across triplicates before filtration, was 0.0034 and was reduced to 0.00174 following filtration. Evaluating genetic distance (GD) and relatedness ( r ) between triplicates before and after filtration (expected to be at the minimum and maximum respectively) showed a significant reduction in the average GD, from 58.1 to 25.3 ( p = 0.0002) and a significant increase in relatedness, from r = 0.98 to r = 0.991 ( p = 0.00587). We demonstrate how error rate estimation enhances recapture detection and improves genotype quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
ccm应助小小技术工采纳,获得10
1秒前
1秒前
Orange应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
坚果完成签到 ,获得积分10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
2秒前
情怀应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
深情安青应助luoyutian采纳,获得10
3秒前
3秒前
华仔应助科研通管家采纳,获得10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助科研通管家采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288753
求助须知:如何正确求助?哪些是违规求助? 2926022
关于积分的说明 8425022
捐赠科研通 2597075
什么是DOI,文献DOI怎么找? 1416973
科研通“疑难数据库(出版商)”最低求助积分说明 659551
邀请新用户注册赠送积分活动 641962