Estimation of winter wheat LAI based on color indices and texture features of RGB images taken by UAV

叶面积指数 RGB颜色模型 数学 种质资源 栽培 植被(病理学) 反向传播 遥感 人工智能 农学 人工神经网络 计算机科学 地理 生物 医学 病理
作者
Hao Li,Xiaobin Yan,Pengyan Su,Yiming Su,Junfeng Li,Zixin Xu,Chunrui Gao,Yu Zhao,Meichen Feng,Fahad Shafiq,Lujie Xiao,Wude Yang,Xingxing Qiao,Chao Wang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:105 (1): 189-200 被引量:7
标识
DOI:10.1002/jsfa.13817
摘要

Abstract Background Leaf area index (LAI) is an important indicator for assessing plant growth and development, and is also closely related to photosynthesis in plants. The realization of rapid accurate estimation of crop LAI plays an important role in guiding farmland production. In study, the UAV‐RGB technology was used to estimate LAI based on 65 winter wheat varieties at different fertility periods, the wheat varieties including farm varieties, main cultivars, new lines, core germplasm and foreign varieties. Color indices (CIs) and texture features were extracted from RGB images to determine their quantitative link to LAI. Results The results revealed that among the extracted image features, LAI exhibited a significant positive correlation with CIs ( r = 0.801), whereas there was a significant negative correlation with texture features ( r = −0.783). Furthermore, the visible atmospheric resistance index, the green–red vegetation index, the modified green–red vegetation index in the CIs, and the mean in the texture features demonstrated a strong correlation with the LAI with r > 0.8. With reference to the model input variables, the backpropagation neural network (BPNN) model of LAI based on the CIs and texture features ( R 2 = 0.730, RMSE = 0.691, RPD = 1.927) outperformed other models constructed by individual variables. Conclusion This study offers a theoretical basis and technical reference for precise monitor on winter wheat LAI based on consumer‐level UAVs. The BPNN model, incorporating CIs and texture features, proved to be superior in estimating LAI, and offered a reliable method for monitoring the growth of winter wheat. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助科研通管家采纳,获得10
刚刚
科研通AI6应助Ivan采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
宋治发布了新的文献求助10
刚刚
宋治发布了新的文献求助10
刚刚
宋治发布了新的文献求助10
刚刚
Lucas应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
砡君应助科研通管家采纳,获得10
1秒前
草莓布丁应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得20
1秒前
浮游应助科研通管家采纳,获得10
1秒前
且慢应助科研通管家采纳,获得10
1秒前
草莓布丁应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
草莓布丁应助科研通管家采纳,获得10
1秒前
砡君应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
轻松念露发布了新的文献求助50
2秒前
Hello应助大致若鱼采纳,获得10
2秒前
陈锦鲤完成签到,获得积分10
3秒前
3秒前
Jacky举报心悦求助涉嫌违规
3秒前
勤恳的小松鼠完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
玛卡巴卡完成签到,获得积分10
4秒前
斯文败类应助带回家反馈采纳,获得10
4秒前
透明人发布了新的文献求助10
5秒前
科研通AI6应助Lirui2333采纳,获得10
6秒前
6秒前
小宝发布了新的文献求助30
6秒前
6秒前
7秒前
十二完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997