Estimation of winter wheat LAI based on color indices and texture features of RGB images taken by UAV

叶面积指数 RGB颜色模型 数学 种质资源 栽培 植被(病理学) 反向传播 遥感 人工智能 农学 人工神经网络 计算机科学 地理 生物 医学 病理
作者
H.F. Li,Xiaobin Yan,Pengyan Su,Yiming Su,Junfeng Li,Zixin Xu,Chunrui Gao,Yu Zhao,Meichen Feng,Fahad Shafiq,Lujie Xiao,Wude Yang,Xingxing Qiao,Chao Wang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:105 (1): 189-200 被引量:2
标识
DOI:10.1002/jsfa.13817
摘要

Abstract Background Leaf area index (LAI) is an important indicator for assessing plant growth and development, and is also closely related to photosynthesis in plants. The realization of rapid accurate estimation of crop LAI plays an important role in guiding farmland production. In study, the UAV‐RGB technology was used to estimate LAI based on 65 winter wheat varieties at different fertility periods, the wheat varieties including farm varieties, main cultivars, new lines, core germplasm and foreign varieties. Color indices (CIs) and texture features were extracted from RGB images to determine their quantitative link to LAI. Results The results revealed that among the extracted image features, LAI exhibited a significant positive correlation with CIs ( r = 0.801), whereas there was a significant negative correlation with texture features ( r = −0.783). Furthermore, the visible atmospheric resistance index, the green–red vegetation index, the modified green–red vegetation index in the CIs, and the mean in the texture features demonstrated a strong correlation with the LAI with r > 0.8. With reference to the model input variables, the backpropagation neural network (BPNN) model of LAI based on the CIs and texture features ( R 2 = 0.730, RMSE = 0.691, RPD = 1.927) outperformed other models constructed by individual variables. Conclusion This study offers a theoretical basis and technical reference for precise monitor on winter wheat LAI based on consumer‐level UAVs. The BPNN model, incorporating CIs and texture features, proved to be superior in estimating LAI, and offered a reliable method for monitoring the growth of winter wheat. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静青寒完成签到,获得积分10
刚刚
REN关闭了REN文献求助
1秒前
好运锦鲤完成签到 ,获得积分10
1秒前
美有姬完成签到,获得积分10
2秒前
万能图书馆应助何博士采纳,获得10
2秒前
科研通AI2S应助蘑菇采纳,获得10
2秒前
一平发布了新的文献求助10
3秒前
王一博完成签到,获得积分10
3秒前
4秒前
nihil完成签到,获得积分10
4秒前
活力的泥猴桃完成签到 ,获得积分10
5秒前
5秒前
6秒前
obito完成签到,获得积分10
6秒前
娜行发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
8秒前
Ck完成签到,获得积分10
8秒前
烦烦完成签到 ,获得积分10
9秒前
百宝发布了新的文献求助10
10秒前
jiangnan发布了新的文献求助10
10秒前
Sev完成签到,获得积分10
10秒前
10秒前
可耐的乘风完成签到,获得积分10
10秒前
FIN应助obito采纳,获得30
11秒前
啾啾发布了新的文献求助10
11秒前
爱学习的向日葵完成签到,获得积分10
12秒前
12秒前
华仔应助泛泛之交采纳,获得10
13秒前
雪123发布了新的文献求助10
13秒前
13秒前
14秒前
charon发布了新的文献求助10
14秒前
凶狠的食铁兽完成签到,获得积分10
14秒前
星辰大海应助花花啊采纳,获得10
14秒前
华仔应助liuyingke采纳,获得10
14秒前
HEIKU应助还不如瞎写采纳,获得10
15秒前
liuliumei发布了新的文献求助30
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672