Estimation of winter wheat LAI based on color indices and texture features of RGB images taken by UAV

叶面积指数 RGB颜色模型 数学 种质资源 栽培 植被(病理学) 反向传播 遥感 人工智能 农学 人工神经网络 计算机科学 地理 生物 医学 病理
作者
H.F. Li,Xiaobin Yan,Pengyan Su,Yiming Su,Junfeng Li,Zixin Xu,Chunrui Gao,Yu Zhao,Meichen Feng,Fahad Shafiq,Lujie Xiao,Wude Yang,Xingxing Qiao,Chao Wang
出处
期刊:Journal of the Science of Food and Agriculture [Wiley]
卷期号:105 (1): 189-200 被引量:5
标识
DOI:10.1002/jsfa.13817
摘要

Abstract Background Leaf area index (LAI) is an important indicator for assessing plant growth and development, and is also closely related to photosynthesis in plants. The realization of rapid accurate estimation of crop LAI plays an important role in guiding farmland production. In study, the UAV‐RGB technology was used to estimate LAI based on 65 winter wheat varieties at different fertility periods, the wheat varieties including farm varieties, main cultivars, new lines, core germplasm and foreign varieties. Color indices (CIs) and texture features were extracted from RGB images to determine their quantitative link to LAI. Results The results revealed that among the extracted image features, LAI exhibited a significant positive correlation with CIs ( r = 0.801), whereas there was a significant negative correlation with texture features ( r = −0.783). Furthermore, the visible atmospheric resistance index, the green–red vegetation index, the modified green–red vegetation index in the CIs, and the mean in the texture features demonstrated a strong correlation with the LAI with r > 0.8. With reference to the model input variables, the backpropagation neural network (BPNN) model of LAI based on the CIs and texture features ( R 2 = 0.730, RMSE = 0.691, RPD = 1.927) outperformed other models constructed by individual variables. Conclusion This study offers a theoretical basis and technical reference for precise monitor on winter wheat LAI based on consumer‐level UAVs. The BPNN model, incorporating CIs and texture features, proved to be superior in estimating LAI, and offered a reliable method for monitoring the growth of winter wheat. © 2024 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeffyoung发布了新的文献求助10
刚刚
1秒前
乾乾完成签到,获得积分10
1秒前
ED应助李振博采纳,获得10
1秒前
文卿发布了新的文献求助10
1秒前
钙片儿完成签到,获得积分10
2秒前
清脆立果完成签到,获得积分10
3秒前
3秒前
粗犷的凌兰完成签到,获得积分10
3秒前
3秒前
panjunlu发布了新的文献求助10
3秒前
4秒前
www0717发布了新的文献求助10
4秒前
zzz完成签到,获得积分10
5秒前
研友_ZlxxzZ完成签到,获得积分10
5秒前
归尘应助XS_QI采纳,获得10
5秒前
6秒前
Attempter完成签到,获得积分20
6秒前
Du发布了新的文献求助10
6秒前
钙片儿发布了新的文献求助10
6秒前
7秒前
大眼睛的草莓完成签到,获得积分10
7秒前
文卿完成签到,获得积分10
7秒前
7秒前
酷酷李可爱婕完成签到 ,获得积分10
8秒前
乐乐应助张阳采纳,获得10
9秒前
9秒前
9秒前
领导范儿应助珂小小采纳,获得10
9秒前
666完成签到,获得积分10
9秒前
假装有昵称完成签到,获得积分10
9秒前
9秒前
zyy完成签到,获得积分10
10秒前
LinglongCai完成签到 ,获得积分10
11秒前
wdy111应助jjjjchou采纳,获得20
11秒前
胡博云完成签到,获得积分10
11秒前
11完成签到,获得积分10
12秒前
SL完成签到,获得积分10
12秒前
慕青应助笑点低的不采纳,获得10
12秒前
铜W完成签到,获得积分20
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582