亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Melon ripeness detection by an improved object detection algorithm for resource constrained environments

成熟度 甜瓜 目标检测 计算机科学 人工智能 资源(消歧) 对象(语法) 计算机视觉 模式识别(心理学) 算法 园艺 生物 成熟 计算机网络
作者
Xuebin Jing,Yuanhao Wang,Dongxi Li,Weihua Pan
出处
期刊:Plant Methods [Springer Nature]
卷期号:20 (1) 被引量:1
标识
DOI:10.1186/s13007-024-01259-3
摘要

Ripeness is a phenotype that significantly impacts the quality of fruits, constituting a crucial factor in the cultivation and harvesting processes. Manual detection methods and experimental analysis, however, are inefficient and costly. In this study, we propose a lightweight and efficient melon ripeness detection method, MRD-YOLO, based on an improved object detection algorithm. The method combines a lightweight backbone network, MobileNetV3, a design paradigm Slim-neck, and a Coordinate Attention mechanism. Additionally, we have created a large-scale melon dataset sourced from a greenhouse based on ripeness. This dataset contains common complexities encountered in the field environment, such as occlusions, overlapping, and varying light intensities. MRD-YOLO achieves a mean Average Precision of 97.4% on this dataset, achieving accurate and reliable melon ripeness detection. Moreover, the method demands only 4.8 G FLOPs and 2.06 M parameters, representing 58.5% and 68.4% of the baseline YOLOv8n model, respectively. It comprehensively outperforms existing methods in terms of balanced accuracy and computational efficiency. Furthermore, it maintains real-time inference capability in GPU environments and demonstrates exceptional inference speed in CPU environments. The lightweight design of MRD-YOLO is anticipated to be deployed in various resource constrained mobile and edge devices, such as picking robots. Particularly noteworthy is its performance when tested on two melon datasets obtained from the Roboflow platform, achieving a mean Average Precision of 85.9%. This underscores its excellent generalization ability on untrained data. This study presents an efficient method for melon ripeness detection, and the dataset utilized in this study, alongside the detection method, will provide a valuable reference for ripeness detection across various types of fruits.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
留白完成签到 ,获得积分10
6秒前
10秒前
orixero应助紫津采纳,获得10
35秒前
45秒前
紫津发布了新的文献求助10
48秒前
1分钟前
1分钟前
longxingbo发布了新的文献求助30
1分钟前
三井库里发布了新的文献求助10
1分钟前
科研通AI5应助三井库里采纳,获得10
1分钟前
zsmj23完成签到 ,获得积分0
1分钟前
1分钟前
2分钟前
Songlin应助Murphy采纳,获得10
2分钟前
邹醉蓝完成签到,获得积分10
2分钟前
打打应助柏特瑞采纳,获得10
2分钟前
研友_nVWP2Z完成签到 ,获得积分10
3分钟前
3分钟前
Songlin关注了科研通微信公众号
3分钟前
柏特瑞完成签到,获得积分10
3分钟前
柏特瑞发布了新的文献求助10
3分钟前
weiwei完成签到,获得积分10
3分钟前
3分钟前
李健应助柏特瑞采纳,获得10
3分钟前
3分钟前
3分钟前
传奇3应助Songlin采纳,获得10
4分钟前
汉堡包应助紫津采纳,获得10
4分钟前
5分钟前
5分钟前
柏特瑞发布了新的文献求助10
5分钟前
紫津发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
紫津完成签到,获得积分10
5分钟前
5分钟前
李健应助柚子采纳,获得10
5分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477472
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110158
捐赠科研通 2760407
什么是DOI,文献DOI怎么找? 1514892
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604