Dynamic modeling of human error in industrial maintenance through structural analysis and system dynamics

相互依存 人为错误 风险分析(工程) 计算机科学 过程(计算) 工厂(面向对象编程) 系统动力学 运筹学 可靠性工程 过程管理 工业工程 工程类 人工智能 业务 政治学 法学 程序设计语言 操作系统
作者
Vahideh Bafandegan Emroozi,Mostafa Kazemi,Alireza Pooya,Mahdi Doostparast
出处
期刊:Risk Analysis [Wiley]
标识
DOI:10.1111/risa.17652
摘要

Abstract Human error constitutes a significant cause of accidents across diverse industries, leading to adverse consequences and heightened disruptions in maintenance operations. Organizations can enhance their decision‐making process by quantifying human errors and identifying the underlying influencing factors, thereby mitigating their repercussions. Consequently, it becomes crucial to examine the value of human error probability (HEP) during these activities. The objective of this paper is to determine and simulate HEP in maintenance tasks at a cement factory, utilizing performance shaping factors (PSFs). The research employs the cross‐impact matrix multiplication applied to classification (MICMAC) analysis method to evaluate the dependencies, impacts, and relationships among the factors influencing human error. This approach classifies and assesses the dependencies and impacts of different factors on HEP, occupational accidents, and related costs. The study also underscores that PSFs can dynamically change under the influence of other variables, emphasizing the necessity to forecast the behavior of human error over time. Therefore, this paper utilizes the MICMAC method to analyze the interdependencies, relationships, and impact levels among different variables. These relationships are then utilized to optimize the implementation of the system dynamics (SD) method. An SD model is employed to forecast the system's behavior, and multiple scenarios are presented. By considering the HEP value, managers can adjust organizational conditions and personnel to ensure acceptability. The paper also presents various scenarios related to HEP to assist managers in making informed decisions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wen完成签到,获得积分10
刚刚
swg发布了新的文献求助10
刚刚
大模型应助拾柒采纳,获得10
刚刚
Stella应助zhou采纳,获得10
1秒前
Soyuu发布了新的文献求助10
1秒前
王哈哈完成签到,获得积分10
1秒前
zwk发布了新的文献求助10
1秒前
1秒前
任性的牛青完成签到 ,获得积分10
1秒前
1秒前
Ukiss完成签到 ,获得积分10
1秒前
2秒前
2秒前
研友_LNBeyL发布了新的文献求助10
2秒前
五條小羊完成签到,获得积分10
3秒前
abc发布了新的文献求助10
3秒前
3秒前
279完成签到,获得积分10
3秒前
4秒前
Linseed完成签到,获得积分10
5秒前
扬之水完成签到,获得积分10
5秒前
DJDJ发布了新的文献求助10
5秒前
星星关注了科研通微信公众号
6秒前
科目三应助yihua采纳,获得10
6秒前
zjy完成签到,获得积分10
6秒前
petrichor完成签到 ,获得积分10
6秒前
善学以致用应助沉默的婴采纳,获得10
6秒前
6秒前
成就烨霖完成签到,获得积分10
6秒前
sola完成签到,获得积分10
7秒前
home完成签到,获得积分10
7秒前
7秒前
哈哈发布了新的文献求助10
7秒前
李晓彤完成签到,获得积分10
7秒前
12发布了新的文献求助10
8秒前
Owen应助MarsXHXL采纳,获得10
8秒前
赘婿应助guoguo采纳,获得10
8秒前
执着从灵发布了新的文献求助10
8秒前
8秒前
代代发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017