Integrating machine learning and biosensors in microfluidic devices: A review

微流控 计算机科学 生物传感器 纳米技术 透视图(图形) 点(几何) 生化工程 数据科学 人工智能 人机交互 工程类 材料科学 几何学 数学
作者
Gianni Antonelli,Joanna Filippi,Michele D’Orazio,G Curci,Paola Casti,Arianna Mencattini,Eugenio Martinelli
出处
期刊:Biosensors and Bioelectronics [Elsevier]
卷期号:263: 116632-116632
标识
DOI:10.1016/j.bios.2024.116632
摘要

Microfluidic devices are increasingly widespread in the literature, being applied to numerous exciting applications, from chemical research to Point-of-Care devices, passing through drug development and clinical scenarios. Setting up these microenvironments, however, introduces the necessity of locally controlling the variables involved in the phenomena under investigation. For this reason, the literature has deeply explored the possibility of introducing sensing elements to investigate the physical quantities and the biochemical concentration inside microfluidic devices. Biosensors, particularly, are well known for their high accuracy, selectivity, and responsiveness. However, their signals could be challenging to interpret and must be carefully analysed to carry out the correct information. In addition, proper data analysis has been demonstrated even to increase biosensors' mentioned qualities. To this regard, machine learning algorithms are undoubtedly among the most suitable approaches to undertake this job, automatically learning from data and highlighting biosensor signals' characteristics at best. Interestingly, it was also demonstrated to benefit microfluidic devices themselves, in a new paradigm that the literature is starting to name "intelligent microfluidics", ideally closing this benefic interaction among these disciplines. This review aims to demonstrate the advantages of the triad paradigm microfluidics-biosensors-machine learning, which is still little used but has a great perspective. After briefly describing the single entities, the different sections will demonstrate the benefits of the dual interactions, highlighting the applications where the reviewed triad paradigm was employed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llt发布了新的文献求助10
刚刚
魔力巴啦啦完成签到 ,获得积分10
刚刚
yuwan发布了新的文献求助10
2秒前
Alicia完成签到,获得积分10
3秒前
4秒前
一轮明月完成签到 ,获得积分10
6秒前
xiaoyu11112发布了新的文献求助10
7秒前
科研通AI2S应助oops采纳,获得10
9秒前
风中晓露发布了新的文献求助10
10秒前
Hello应助酶没美镁采纳,获得10
10秒前
10秒前
可乐发布了新的文献求助10
10秒前
轩羊羊完成签到 ,获得积分10
11秒前
lynn完成签到 ,获得积分10
11秒前
可爱的函函应助XYZ采纳,获得10
14秒前
害怕的梦凡完成签到,获得积分10
14秒前
14秒前
lyj334发布了新的文献求助10
15秒前
球球完成签到,获得积分10
16秒前
17秒前
veen完成签到 ,获得积分10
18秒前
19秒前
芒果豆豆完成签到,获得积分20
20秒前
pentayouth完成签到,获得积分10
20秒前
派总完成签到,获得积分10
23秒前
芒果豆豆发布了新的文献求助20
23秒前
24秒前
Z-先森完成签到,获得积分10
26秒前
26秒前
Yik完成签到,获得积分10
26秒前
不安的松完成签到 ,获得积分10
27秒前
28秒前
liubaibai2333发布了新的文献求助10
29秒前
无奈的凌寒完成签到,获得积分10
30秒前
李健应助lyj334采纳,获得10
30秒前
31秒前
XYZ发布了新的文献求助10
31秒前
lkkkkkk完成签到,获得积分20
32秒前
karL完成签到,获得积分10
32秒前
32秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816343
关于积分的说明 7912340
捐赠科研通 2475963
什么是DOI,文献DOI怎么找? 1318480
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388