亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Criticality of Nursing Care for Patients With Alzheimer’s Disease in the ICU: Insights From MIMIC III Dataset

护理部 医学 疾病 临界性 护理 心理学 重症监护医学 内科学 物理 核物理学
作者
Zhou Yan,Quan Guo,Xue Jia-Hui
出处
期刊:Clinical Nursing Research [SAGE]
标识
DOI:10.1177/10547738241273158
摘要

Alzheimer’s disease (AD) patients admitted to intensive care units (ICUs) exhibit varying survival outcomes due to the unique challenges in managing AD patients. Stratifying patient mortality risk and understanding the criticality of nursing care are important to improve the clinical outcomes of AD patients. This study aimed to leverage machine learning (ML) and electronic health records (EHRs) only consisting of demographics, disease history, and routine lab tests, with a focus on nursing care, to facilitate the optimization of nursing practices for AD patients. We utilized Medical Information Mart for Intensive Care III, an open-source EHR dataset, and AD patients were identified based on the International Classification of Diseases, Ninth Revision codes. From a cohort of 453 patients, a total of 60 features, encompassing demographics, laboratory tests, disease history, and number of nursing events, were extracted. ML models, including XGBoost, random forest, logistic regression, and multi-layer perceptron, were trained to predict the 30-day mortality risk. In addition, the influence of nursing care was analyzed in terms of feature importance using values calculated from both the inherent XGBoost module and the SHapley Additive exPlanations (SHAP) library. XGBoost emerged as the lead model with a high accuracy of 0.730, area under the curve (AUC) of 0.750, sensitivity of 0.688, and specificity of 0.740. Feature importance analyses using inherent XGBoost module or SHAP both indicated the number of nursing care within 14 days post-admission as an important denominator for 30-day mortality risk. When nursing care events were excluded as a feature, stratifying patient mortality risk was also possible but the model’s AUC of receiver operating characteristic curve was reduced to 0.68. Nursing care plays a pivotal role in the survival outcomes of AD patients in ICUs. ML models can be effectively employed to predict mortality risks and underscore the importance of specific features, including nursing care, in patient outcomes. Early identification of high-risk AD patients can aid in prioritizing intensive nursing care, potentially improving survival rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
9秒前
11秒前
liuliu发布了新的文献求助30
20秒前
27秒前
烟花应助Li采纳,获得10
29秒前
liuliu完成签到,获得积分20
40秒前
43秒前
1分钟前
ataybabdallah完成签到,获得积分10
1分钟前
1分钟前
1分钟前
开朗大雁完成签到 ,获得积分10
1分钟前
上官若男应助Marshall采纳,获得10
1分钟前
1分钟前
1分钟前
Marshall发布了新的文献求助10
1分钟前
1分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
kdjm688完成签到,获得积分10
2分钟前
彭于晏应助蓝色牛马采纳,获得10
2分钟前
2分钟前
蓝色牛马发布了新的文献求助10
2分钟前
2分钟前
2分钟前
9527完成签到,获得积分10
2分钟前
Li发布了新的文献求助10
2分钟前
优美芸发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
科研通AI2S应助Li采纳,获得10
3分钟前
JamesPei应助Li采纳,获得10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788626
求助须知:如何正确求助?哪些是违规求助? 5709683
关于积分的说明 15473737
捐赠科研通 4916631
什么是DOI,文献DOI怎么找? 2646497
邀请新用户注册赠送积分活动 1594168
关于科研通互助平台的介绍 1548580