Criticality of Nursing Care for Patients With Alzheimer’s Disease in the ICU: Insights From MIMIC III Dataset

护理部 医学 疾病 临界性 护理 心理学 重症监护医学 内科学 物理 核物理学
作者
Zhou Yan,Quan Guo,Xue Jia-Hui
出处
期刊:Clinical Nursing Research [SAGE]
标识
DOI:10.1177/10547738241273158
摘要

Alzheimer’s disease (AD) patients admitted to intensive care units (ICUs) exhibit varying survival outcomes due to the unique challenges in managing AD patients. Stratifying patient mortality risk and understanding the criticality of nursing care are important to improve the clinical outcomes of AD patients. This study aimed to leverage machine learning (ML) and electronic health records (EHRs) only consisting of demographics, disease history, and routine lab tests, with a focus on nursing care, to facilitate the optimization of nursing practices for AD patients. We utilized Medical Information Mart for Intensive Care III, an open-source EHR dataset, and AD patients were identified based on the International Classification of Diseases, Ninth Revision codes. From a cohort of 453 patients, a total of 60 features, encompassing demographics, laboratory tests, disease history, and number of nursing events, were extracted. ML models, including XGBoost, random forest, logistic regression, and multi-layer perceptron, were trained to predict the 30-day mortality risk. In addition, the influence of nursing care was analyzed in terms of feature importance using values calculated from both the inherent XGBoost module and the SHapley Additive exPlanations (SHAP) library. XGBoost emerged as the lead model with a high accuracy of 0.730, area under the curve (AUC) of 0.750, sensitivity of 0.688, and specificity of 0.740. Feature importance analyses using inherent XGBoost module or SHAP both indicated the number of nursing care within 14 days post-admission as an important denominator for 30-day mortality risk. When nursing care events were excluded as a feature, stratifying patient mortality risk was also possible but the model’s AUC of receiver operating characteristic curve was reduced to 0.68. Nursing care plays a pivotal role in the survival outcomes of AD patients in ICUs. ML models can be effectively employed to predict mortality risks and underscore the importance of specific features, including nursing care, in patient outcomes. Early identification of high-risk AD patients can aid in prioritizing intensive nursing care, potentially improving survival rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助QQ采纳,获得10
1秒前
自信夜春发布了新的文献求助10
1秒前
2秒前
邹随阴发布了新的文献求助10
3秒前
LTT发布了新的文献求助10
3秒前
pluto应助丑丑阿采纳,获得10
6秒前
7秒前
自信夜春完成签到,获得积分10
8秒前
脑洞疼应助wsqg123采纳,获得10
8秒前
Ava应助LuoYR@SZU采纳,获得10
9秒前
小蘑菇应助妖精很通采纳,获得10
10秒前
10秒前
智青发布了新的文献求助20
11秒前
思源应助掌灯师采纳,获得10
11秒前
xxy发布了新的文献求助10
11秒前
QQ完成签到,获得积分20
11秒前
邹随阴完成签到,获得积分10
14秒前
14秒前
Kristin应助111采纳,获得10
14秒前
16秒前
chenpingchang发布了新的文献求助10
17秒前
17秒前
Lucas应助猪猪采纳,获得10
17秒前
linhanyu发布了新的文献求助10
21秒前
悦耳半梦完成签到,获得积分10
21秒前
wsqg123发布了新的文献求助10
23秒前
悦耳的妙竹完成签到,获得积分10
23秒前
李爱国应助鹏程采纳,获得10
26秒前
27秒前
32秒前
大个应助大布采纳,获得20
32秒前
张宝发布了新的文献求助10
33秒前
元素搬运工完成签到,获得积分10
38秒前
讨厌的十九岁完成签到,获得积分10
39秒前
41秒前
Singularity应助跳跃的聪展采纳,获得10
42秒前
Ava应助usami42采纳,获得30
44秒前
zmuzhang2019发布了新的文献求助10
46秒前
47秒前
48秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161611
求助须知:如何正确求助?哪些是违规求助? 2812907
关于积分的说明 7897655
捐赠科研通 2471797
什么是DOI,文献DOI怎么找? 1316160
科研通“疑难数据库(出版商)”最低求助积分说明 631222
版权声明 602112