Criticality of Nursing Care for Patients With Alzheimer’s Disease in the ICU: Insights From MIMIC III Dataset

护理部 医学 疾病 临界性 护理 心理学 重症监护医学 内科学 物理 核物理学
作者
Zhou Yan,Quan Guo,Xue Jia-Hui
出处
期刊:Clinical Nursing Research [SAGE]
标识
DOI:10.1177/10547738241273158
摘要

Alzheimer’s disease (AD) patients admitted to intensive care units (ICUs) exhibit varying survival outcomes due to the unique challenges in managing AD patients. Stratifying patient mortality risk and understanding the criticality of nursing care are important to improve the clinical outcomes of AD patients. This study aimed to leverage machine learning (ML) and electronic health records (EHRs) only consisting of demographics, disease history, and routine lab tests, with a focus on nursing care, to facilitate the optimization of nursing practices for AD patients. We utilized Medical Information Mart for Intensive Care III, an open-source EHR dataset, and AD patients were identified based on the International Classification of Diseases, Ninth Revision codes. From a cohort of 453 patients, a total of 60 features, encompassing demographics, laboratory tests, disease history, and number of nursing events, were extracted. ML models, including XGBoost, random forest, logistic regression, and multi-layer perceptron, were trained to predict the 30-day mortality risk. In addition, the influence of nursing care was analyzed in terms of feature importance using values calculated from both the inherent XGBoost module and the SHapley Additive exPlanations (SHAP) library. XGBoost emerged as the lead model with a high accuracy of 0.730, area under the curve (AUC) of 0.750, sensitivity of 0.688, and specificity of 0.740. Feature importance analyses using inherent XGBoost module or SHAP both indicated the number of nursing care within 14 days post-admission as an important denominator for 30-day mortality risk. When nursing care events were excluded as a feature, stratifying patient mortality risk was also possible but the model’s AUC of receiver operating characteristic curve was reduced to 0.68. Nursing care plays a pivotal role in the survival outcomes of AD patients in ICUs. ML models can be effectively employed to predict mortality risks and underscore the importance of specific features, including nursing care, in patient outcomes. Early identification of high-risk AD patients can aid in prioritizing intensive nursing care, potentially improving survival rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助番茄采纳,获得10
1秒前
自己完成签到,获得积分20
1秒前
2秒前
爱笑的芒果完成签到,获得积分10
2秒前
饕邪完成签到 ,获得积分10
2秒前
2秒前
2秒前
猪米妮发布了新的文献求助10
3秒前
高兴的雅阳完成签到,获得积分20
4秒前
4秒前
漂亮的人生完成签到,获得积分10
4秒前
科目三应助Wwbdienbd采纳,获得10
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
彭于晏应助yeye采纳,获得20
7秒前
一线西风发布了新的文献求助10
7秒前
文昊发布了新的文献求助10
7秒前
7秒前
席河木鱼完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
怕孤单的听寒完成签到,获得积分10
9秒前
9秒前
赛特特特完成签到,获得积分10
9秒前
gougou发布了新的文献求助10
9秒前
萌&发布了新的文献求助10
10秒前
Akim应助野生菜狗采纳,获得10
10秒前
10秒前
嘟嘟图图发布了新的文献求助20
11秒前
rushfuture发布了新的文献求助10
11秒前
22222发布了新的文献求助10
12秒前
NexusExplorer应助wjp采纳,获得10
12秒前
自觉断秋完成签到,获得积分10
12秒前
13秒前
iiing发布了新的文献求助10
14秒前
15秒前
豌豆射手完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5712541
求助须知:如何正确求助?哪些是违规求助? 5210657
关于积分的说明 15267838
捐赠科研通 4864451
什么是DOI,文献DOI怎么找? 2611394
邀请新用户注册赠送积分活动 1561695
关于科研通互助平台的介绍 1518970