Criticality of Nursing Care for Patients With Alzheimer’s Disease in the ICU: Insights From MIMIC III Dataset

护理部 医学 疾病 临界性 护理 心理学 重症监护医学 内科学 物理 核物理学
作者
Zhou Yan,Quan Guo,Xue Jia-Hui
出处
期刊:Clinical Nursing Research [SAGE]
标识
DOI:10.1177/10547738241273158
摘要

Alzheimer’s disease (AD) patients admitted to intensive care units (ICUs) exhibit varying survival outcomes due to the unique challenges in managing AD patients. Stratifying patient mortality risk and understanding the criticality of nursing care are important to improve the clinical outcomes of AD patients. This study aimed to leverage machine learning (ML) and electronic health records (EHRs) only consisting of demographics, disease history, and routine lab tests, with a focus on nursing care, to facilitate the optimization of nursing practices for AD patients. We utilized Medical Information Mart for Intensive Care III, an open-source EHR dataset, and AD patients were identified based on the International Classification of Diseases, Ninth Revision codes. From a cohort of 453 patients, a total of 60 features, encompassing demographics, laboratory tests, disease history, and number of nursing events, were extracted. ML models, including XGBoost, random forest, logistic regression, and multi-layer perceptron, were trained to predict the 30-day mortality risk. In addition, the influence of nursing care was analyzed in terms of feature importance using values calculated from both the inherent XGBoost module and the SHapley Additive exPlanations (SHAP) library. XGBoost emerged as the lead model with a high accuracy of 0.730, area under the curve (AUC) of 0.750, sensitivity of 0.688, and specificity of 0.740. Feature importance analyses using inherent XGBoost module or SHAP both indicated the number of nursing care within 14 days post-admission as an important denominator for 30-day mortality risk. When nursing care events were excluded as a feature, stratifying patient mortality risk was also possible but the model’s AUC of receiver operating characteristic curve was reduced to 0.68. Nursing care plays a pivotal role in the survival outcomes of AD patients in ICUs. ML models can be effectively employed to predict mortality risks and underscore the importance of specific features, including nursing care, in patient outcomes. Early identification of high-risk AD patients can aid in prioritizing intensive nursing care, potentially improving survival rates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怕孤独的花瓣完成签到 ,获得积分10
刚刚
小鱼冻干完成签到,获得积分10
刚刚
刚刚
1秒前
Twonej应助保持科研热情采纳,获得30
2秒前
2秒前
2秒前
表示肯定完成签到,获得积分10
3秒前
3秒前
111222333完成签到,获得积分10
3秒前
思源应助闫晓涵采纳,获得10
4秒前
5秒前
天玄发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
香芋发布了新的文献求助10
6秒前
香蕉觅云应助默默的甜瓜采纳,获得10
6秒前
6秒前
6秒前
xingran完成签到,获得积分10
7秒前
111222333发布了新的文献求助10
7秒前
深情安青应助like采纳,获得10
7秒前
钱春霞发布了新的文献求助10
8秒前
adb发布了新的文献求助10
9秒前
dsdingding完成签到,获得积分10
10秒前
深情安青应助YFW采纳,获得10
11秒前
kazuma发布了新的文献求助30
12秒前
斯文败类应助cabbage采纳,获得10
13秒前
13秒前
Qwe发布了新的文献求助10
15秒前
Twonej举报whynot求助涉嫌违规
17秒前
17秒前
18秒前
18秒前
jiali发布了新的文献求助10
18秒前
怦然发布了新的文献求助10
22秒前
qin123发布了新的文献求助10
22秒前
YFW发布了新的文献求助10
22秒前
cw完成签到,获得积分10
22秒前
23秒前
小心心鸭完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737437
求助须知:如何正确求助?哪些是违规求助? 5372472
关于积分的说明 15335484
捐赠科研通 4880930
什么是DOI,文献DOI怎么找? 2623186
邀请新用户注册赠送积分活动 1571999
关于科研通互助平台的介绍 1528811