亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Criticality of Nursing Care for Patients With Alzheimer’s Disease in the ICU: Insights From MIMIC III Dataset

护理部 医学 疾病 临界性 护理 心理学 重症监护医学 内科学 物理 核物理学
作者
Zhou Yan,Quan Guo,Xue Jia-Hui
出处
期刊:Clinical Nursing Research [SAGE]
标识
DOI:10.1177/10547738241273158
摘要

Alzheimer’s disease (AD) patients admitted to intensive care units (ICUs) exhibit varying survival outcomes due to the unique challenges in managing AD patients. Stratifying patient mortality risk and understanding the criticality of nursing care are important to improve the clinical outcomes of AD patients. This study aimed to leverage machine learning (ML) and electronic health records (EHRs) only consisting of demographics, disease history, and routine lab tests, with a focus on nursing care, to facilitate the optimization of nursing practices for AD patients. We utilized Medical Information Mart for Intensive Care III, an open-source EHR dataset, and AD patients were identified based on the International Classification of Diseases, Ninth Revision codes. From a cohort of 453 patients, a total of 60 features, encompassing demographics, laboratory tests, disease history, and number of nursing events, were extracted. ML models, including XGBoost, random forest, logistic regression, and multi-layer perceptron, were trained to predict the 30-day mortality risk. In addition, the influence of nursing care was analyzed in terms of feature importance using values calculated from both the inherent XGBoost module and the SHapley Additive exPlanations (SHAP) library. XGBoost emerged as the lead model with a high accuracy of 0.730, area under the curve (AUC) of 0.750, sensitivity of 0.688, and specificity of 0.740. Feature importance analyses using inherent XGBoost module or SHAP both indicated the number of nursing care within 14 days post-admission as an important denominator for 30-day mortality risk. When nursing care events were excluded as a feature, stratifying patient mortality risk was also possible but the model’s AUC of receiver operating characteristic curve was reduced to 0.68. Nursing care plays a pivotal role in the survival outcomes of AD patients in ICUs. ML models can be effectively employed to predict mortality risks and underscore the importance of specific features, including nursing care, in patient outcomes. Early identification of high-risk AD patients can aid in prioritizing intensive nursing care, potentially improving survival rates.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
8秒前
多情向日葵完成签到,获得积分10
18秒前
可怜的课题组补助完成签到,获得积分20
35秒前
35秒前
asd完成签到,获得积分10
42秒前
Jianismye发布了新的文献求助10
44秒前
雪飞杨完成签到 ,获得积分10
50秒前
Simon应助香蕉海白采纳,获得20
56秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
59秒前
英姑应助香蕉海白采纳,获得10
1分钟前
1分钟前
自然的清涟应助行人采纳,获得10
1分钟前
解语花完成签到,获得积分10
1分钟前
小马甲应助香蕉海白采纳,获得10
1分钟前
解语花发布了新的文献求助10
1分钟前
BBBBBlue先森应助解语花采纳,获得10
1分钟前
丘比特应助解语花采纳,获得30
1分钟前
斯文败类应助解语花采纳,获得30
1分钟前
蜗牛应助解语花采纳,获得10
1分钟前
852应助解语花采纳,获得10
1分钟前
浮游应助解语花采纳,获得30
1分钟前
tuanheqi应助解语花采纳,获得180
1分钟前
1分钟前
1分钟前
乐安发布了新的文献求助10
1分钟前
王大纯完成签到,获得积分20
1分钟前
hy发布了新的文献求助10
1分钟前
小底发布了新的文献求助10
1分钟前
思源应助小底采纳,获得10
1分钟前
脆脆发布了新的文献求助10
1分钟前
钟钟完成签到,获得积分10
1分钟前
1分钟前
研友_ngX12Z完成签到 ,获得积分10
1分钟前
吴迪发布了新的文献求助10
1分钟前
脆脆完成签到,获得积分10
1分钟前
1分钟前
1分钟前
麻麻薯完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356725
求助须知:如何正确求助?哪些是违规求助? 4488472
关于积分的说明 13972162
捐赠科研通 4389438
什么是DOI,文献DOI怎么找? 2411558
邀请新用户注册赠送积分活动 1404080
关于科研通互助平台的介绍 1378081