Time-Aware Attention-Based Transformer (TAAT) for Cloud Computing System Failure Prediction

计算机科学 云计算 变压器 分布式计算 嵌入式系统 操作系统 工程类 电气工程 电压
作者
Lingfei Deng,Yunong Wang,Haoran Wang,Xuhua Ma,Xiaoming Du,Xudong Zheng,Dongrui Wu
标识
DOI:10.1145/3637528.3671547
摘要

Log-based failure prediction helps identify and mitigate system failures ahead of time, increasing the reliability of cloud elastic computing systems. However, most existing log-based failure prediction approaches only focus on semantic information, and do not make full use of the information contained in the timestamps of log messages. This paper proposes time-aware attention-based transformer (TAAT), a failure prediction approach that extracts semantic and temporal information simultaneously from log messages and their timestamps. TAAT first tokenizes raw log messages into specific exceptions, and then performs: 1) exception sequence embedding that reorganizes the exceptions of each node as an ordered sequence and converts them to vectors; 2) time relation estimation that computes time relation matrices from the timestamps; and, 3) time-aware attention that computes semantic correlation matrices from the exception sequences and then combines them with time relation matrices. Experiments on Alibaba Cloud demonstrated that TAAT achieves an approximately 10% performance improvement compared with the state-of-the-art approaches. TAAT is now used in the daily operation of Alibaba Cloud. Moreover, this paper also releases the real-world cloud computing failure prediction dataset used in our study, which consists of about 2.7 billion syslogs from about 300,000 node controllers during a 4-month period. To our knowledge, this is the largest dataset of its kind, and is expected to be very useful to the community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yueyue完成签到,获得积分10
刚刚
方方完成签到 ,获得积分10
刚刚
刚刚
leaolf应助科研通管家采纳,获得10
1秒前
leaolf应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
酷波er应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
2秒前
LJJ完成签到 ,获得积分10
3秒前
3秒前
3秒前
Assassion发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
蔡从安完成签到,获得积分20
8秒前
Joany发布了新的文献求助10
9秒前
小机灵鬼完成签到 ,获得积分10
11秒前
苗条而大河完成签到,获得积分10
11秒前
13秒前
ding应助沉静涵山采纳,获得10
13秒前
15秒前
严究生发布了新的文献求助10
18秒前
18秒前
量子星尘发布了新的文献求助10
20秒前
花花猪1989完成签到 ,获得积分10
23秒前
LHE发布了新的文献求助10
23秒前
livinglast完成签到 ,获得积分10
25秒前
Joany完成签到,获得积分10
26秒前
苗条的立果完成签到 ,获得积分10
27秒前
mmm4完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
研友_n0kjPL完成签到,获得积分0
34秒前
昔昔完成签到 ,获得积分10
36秒前
37秒前
沉静涵山发布了新的文献求助10
37秒前
认真丹亦完成签到 ,获得积分10
37秒前
38秒前
Jeffrey完成签到,获得积分10
38秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597489
求助须知:如何正确求助?哪些是违规求助? 4009045
关于积分的说明 12409850
捐赠科研通 3688315
什么是DOI,文献DOI怎么找? 2033094
邀请新用户注册赠送积分活动 1066346
科研通“疑难数据库(出版商)”最低求助积分说明 951586