发病机制
内皮干细胞
肿瘤坏死因子α
封堵器
转录组
细胞因子
医学
紧密连接
免疫学
生物
细胞生物学
基因表达
基因
生物化学
体外
作者
Qian Zhang,Lu‐Feng Shi,R Chen,Hehe Zhao,Cong Yu,Yirong Wang,Peng Lu
摘要
Abstract Intracranial aneurysm (IA) is a common cerebrovascular disease. Immune system disorders and endothelial dysfunction are essential mechanisms of its pathogenesis. This study aims to explore the therapeutic effect and mechanism of Geniposide (Gen) on IA, which has a protective impact on endothelial cells and cardiovascular and cerebrovascular diseases. IA mouse models were administered intraperitoneal injections of geniposide for 2 weeks following elastase injection into the right basal ganglia of the brain for intervention. The efficacy of Gen in treating IA was evaluated through pathological testing and transcriptome sequencing analysis of Willis ring vascular tissue. The primary mechanism of action was linked to the expression of GSK3β in Th17 cells. The percentage of splenic Th17 cell differentiation in IA mice was significantly inhibited by Gen. GSK3β/STAT3, and other pathway protein expression levels were also significantly inhibited by Gen. Additionally, TNF‐α and IL‐23 cytokine contents were significantly downregulated after Gen treatment. These results indicated that Gen significantly inhibited the percentage of Th17 cell differentiation, an effect that was reversed upon overexpression of the GSK3B gene. Furthermore, Gen‐treated, Th17 differentiation‐inducing cell‐conditioned medium significantly up‐regulated the expression of tight junction proteins ZO‐1, Occludin, and Claudin‐5 in murine aortic endothelial cells. Administering the GSK3β inhibitor Tideglusib to IA mice alleviated the severity of IA disease pathology and up‐regulated aortic tight junction protein expression. In conclusion, Gen inhibits Th17 cell differentiation through GSK3β, which reduces endothelial cell injury and up‐regulates tight junction protein expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI