Self-Supervised Learning for Graph Dataset Condensation

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Y. N. WANG,Xiao Yan,Shiyu Jin,Hao Huang,Quanqing Xu,Qingchen Zhang,Bo Du,Jiawei Jiang
标识
DOI:10.1145/3637528.3671682
摘要

Graph dataset condensation (GDC) reduces a dataset with many graphs into a smaller dataset with fewer graphs while maintaining model training accuracy. GDC saves the storage cost and hence accelerates training. Although several GDC methods have been proposed, they are all supervised and require massive labels for the graphs, while graph labels can be scarce in many practical scenarios. To fill this gap, we propose a self-supervised graph dataset condensation method called SGDC, which does not require label information. Our initial design starts with the classical bilevel optimization paradigm for dataset condensation and incorporates contrastive learning techniques. But such a solution yields poor accuracy due to the biased gradient estimation caused by data augmentation. To solve this problem, we introduce representation matching, which conducts training by aligning the representations produced by the condensed graphs with the target representations generated by a pre-trained SSL model. This design eliminates the need for data augmentation and avoids biased gradient. We further propose a graph attention kernel, which not only improves accuracy but also reduces running time when combined with self-supervised kernel ridge regression (KRR). To simplify SGDC and make it more robust, we adopt a adjacency matrix reusing approach, which reuses the topology of the original graphs for the condensed graphs instead of repeatedly learning topology during training. Our evaluations on seven graph datasets find that SGDC improves model accuracy by up to 9.7% compared with 5 state-of-the-art baselines, even if they use label information. Moreover, SGDC is significantly more efficient than the baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qvB发布了新的文献求助10
刚刚
阳子发布了新的文献求助10
刚刚
2秒前
铜锣烧发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
白白不读书完成签到 ,获得积分10
4秒前
核桃核桃完成签到,获得积分10
5秒前
5秒前
大气早晨发布了新的文献求助10
6秒前
7秒前
ink发布了新的文献求助30
7秒前
爱吃香菜发布了新的文献求助10
7秒前
daisies举报LIN求助涉嫌违规
8秒前
Flipped发布了新的文献求助10
8秒前
wwwww驳回了ding应助
8秒前
学术发布了新的文献求助10
8秒前
8秒前
EBA发布了新的文献求助10
9秒前
9秒前
HDD发布了新的文献求助10
10秒前
铜锣烧完成签到,获得积分10
11秒前
11秒前
你猜完成签到,获得积分10
11秒前
隐形曼青应助猪猪hero采纳,获得10
11秒前
十一号发布了新的文献求助10
12秒前
英勇的笑南完成签到,获得积分20
12秒前
喵喵发布了新的文献求助20
12秒前
小萝卜完成签到,获得积分10
12秒前
12秒前
满天星的光完成签到,获得积分10
14秒前
14秒前
15秒前
jeesy发布了新的文献求助10
15秒前
领导范儿应助呆呆要努力采纳,获得10
15秒前
sci完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608665
求助须知:如何正确求助?哪些是违规求助? 4015152
关于积分的说明 12432228
捐赠科研通 3696386
什么是DOI,文献DOI怎么找? 2037989
邀请新用户注册赠送积分活动 1071068
科研通“疑难数据库(出版商)”最低求助积分说明 954975