Self-Supervised Learning for Graph Dataset Condensation

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Y. N. WANG,Xiao Yan,Shiyu Jin,Hao Huang,Quanqing Xu,Qingchen Zhang,Bo Du,Jiawei Jiang
标识
DOI:10.1145/3637528.3671682
摘要

Graph dataset condensation (GDC) reduces a dataset with many graphs into a smaller dataset with fewer graphs while maintaining model training accuracy. GDC saves the storage cost and hence accelerates training. Although several GDC methods have been proposed, they are all supervised and require massive labels for the graphs, while graph labels can be scarce in many practical scenarios. To fill this gap, we propose a self-supervised graph dataset condensation method called SGDC, which does not require label information. Our initial design starts with the classical bilevel optimization paradigm for dataset condensation and incorporates contrastive learning techniques. But such a solution yields poor accuracy due to the biased gradient estimation caused by data augmentation. To solve this problem, we introduce representation matching, which conducts training by aligning the representations produced by the condensed graphs with the target representations generated by a pre-trained SSL model. This design eliminates the need for data augmentation and avoids biased gradient. We further propose a graph attention kernel, which not only improves accuracy but also reduces running time when combined with self-supervised kernel ridge regression (KRR). To simplify SGDC and make it more robust, we adopt a adjacency matrix reusing approach, which reuses the topology of the original graphs for the condensed graphs instead of repeatedly learning topology during training. Our evaluations on seven graph datasets find that SGDC improves model accuracy by up to 9.7% compared with 5 state-of-the-art baselines, even if they use label information. Moreover, SGDC is significantly more efficient than the baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靳欣妍发布了新的文献求助10
1秒前
2秒前
2秒前
SMZ应助王泽坤采纳,获得30
2秒前
量子星尘发布了新的文献求助10
3秒前
ksr8888应助ukulele117采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
在水一方应助YRY采纳,获得10
3秒前
4秒前
hanry发布了新的文献求助10
5秒前
在水一方应助rachel采纳,获得10
5秒前
可口可乐味的大橙子完成签到,获得积分10
6秒前
6秒前
静途完成签到,获得积分10
6秒前
Hello应助沉默的美女采纳,获得10
6秒前
lucky发布了新的文献求助20
6秒前
6秒前
东方树叶发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
8秒前
findforever发布了新的文献求助10
8秒前
Yanwenjun发布了新的文献求助10
8秒前
8秒前
8秒前
观澜发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
思源应助科研通管家采纳,获得10
9秒前
华仔应助秋风之墩采纳,获得10
9秒前
Wind应助科研通管家采纳,获得10
10秒前
you完成签到,获得积分10
10秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619405
求助须知:如何正确求助?哪些是违规求助? 4704160
关于积分的说明 14926129
捐赠科研通 4759826
什么是DOI,文献DOI怎么找? 2550547
邀请新用户注册赠送积分活动 1513336
关于科研通互助平台的介绍 1474401