Self-Supervised Learning for Graph Dataset Condensation

计算机科学 图形 人工智能 机器学习 理论计算机科学
作者
Y. N. WANG,Xiao Yan,Shiyu Jin,Hao Huang,Quanqing Xu,Qingchen Zhang,Bo Du,Jiawei Jiang
标识
DOI:10.1145/3637528.3671682
摘要

Graph dataset condensation (GDC) reduces a dataset with many graphs into a smaller dataset with fewer graphs while maintaining model training accuracy. GDC saves the storage cost and hence accelerates training. Although several GDC methods have been proposed, they are all supervised and require massive labels for the graphs, while graph labels can be scarce in many practical scenarios. To fill this gap, we propose a self-supervised graph dataset condensation method called SGDC, which does not require label information. Our initial design starts with the classical bilevel optimization paradigm for dataset condensation and incorporates contrastive learning techniques. But such a solution yields poor accuracy due to the biased gradient estimation caused by data augmentation. To solve this problem, we introduce representation matching, which conducts training by aligning the representations produced by the condensed graphs with the target representations generated by a pre-trained SSL model. This design eliminates the need for data augmentation and avoids biased gradient. We further propose a graph attention kernel, which not only improves accuracy but also reduces running time when combined with self-supervised kernel ridge regression (KRR). To simplify SGDC and make it more robust, we adopt a adjacency matrix reusing approach, which reuses the topology of the original graphs for the condensed graphs instead of repeatedly learning topology during training. Our evaluations on seven graph datasets find that SGDC improves model accuracy by up to 9.7% compared with 5 state-of-the-art baselines, even if they use label information. Moreover, SGDC is significantly more efficient than the baselines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
山大琦子发布了新的文献求助10
1秒前
1秒前
rrjl完成签到,获得积分10
2秒前
3秒前
海鑫王完成签到,获得积分10
3秒前
4秒前
4秒前
兰园蓝发布了新的文献求助50
4秒前
无花果应助追寻宛海采纳,获得15
4秒前
4秒前
kakainho发布了新的文献求助10
4秒前
韩嘉琦发布了新的文献求助10
5秒前
5秒前
zz关闭了zz文献求助
5秒前
桐桐应助阿绫采纳,获得10
5秒前
5秒前
5秒前
xiaoma发布了新的文献求助10
6秒前
柠檬小丸子完成签到 ,获得积分20
6秒前
颖123发布了新的文献求助10
6秒前
王钟萱完成签到,获得积分10
7秒前
7秒前
李博士完成签到,获得积分10
7秒前
7秒前
冬柳发布了新的文献求助10
7秒前
lincsh发布了新的文献求助10
7秒前
8秒前
Apriouo完成签到 ,获得积分10
8秒前
陈陈发布了新的文献求助10
8秒前
高高以松完成签到,获得积分10
9秒前
Acrome完成签到 ,获得积分10
10秒前
11秒前
cocopan发布了新的文献求助10
11秒前
荷珠发布了新的文献求助10
11秒前
Harlotte完成签到 ,获得积分0
13秒前
13秒前
小禾一定行完成签到 ,获得积分10
13秒前
14秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901