亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Aboveground biomass inversion of forestland in a Jinsha River dry-hot valley by integrating high and medium spatial resolution optical images: A case study on Yuanmou County of Southwest China

反演(地质) 图像分辨率 环境科学 中国 遥感 生物量(生态学) 高分辨率 分辨率(逻辑) 地质学 地理 地貌学 计算机科学 人工智能 考古 海洋学 构造盆地
作者
Zihao Liu,Tian‐Bao Huang,Yong Wu,Xiaoli Zhang,Chunxiao Liu,Zhibo Yu,Can Xu,Guanglong Ou
出处
期刊:Ecological Informatics [Elsevier]
卷期号:83: 102796-102796
标识
DOI:10.1016/j.ecoinf.2024.102796
摘要

It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (R2) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
3秒前
bkagyin应助可乐采纳,获得10
12秒前
健忘的自行车完成签到,获得积分20
12秒前
13秒前
Able完成签到,获得积分10
14秒前
阿花阿花发布了新的文献求助10
19秒前
小白完成签到 ,获得积分10
20秒前
26秒前
34秒前
35秒前
35秒前
lllyq完成签到,获得积分10
35秒前
tuanheqi发布了新的文献求助20
37秒前
一独白发布了新的文献求助10
38秒前
Orange应助李春鸿采纳,获得10
38秒前
一只呆呆发布了新的文献求助10
49秒前
58秒前
1分钟前
1分钟前
科研通AI6应助清脆的人生采纳,获得10
1分钟前
卓念梦发布了新的文献求助10
1分钟前
LLL完成签到,获得积分10
1分钟前
nic完成签到,获得积分10
1分钟前
1分钟前
Frank应助一独白采纳,获得10
1分钟前
一只呆呆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
可乐发布了新的文献求助10
1分钟前
1分钟前
今后应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5454784
求助须知:如何正确求助?哪些是违规求助? 4562164
关于积分的说明 14284810
捐赠科研通 4485976
什么是DOI,文献DOI怎么找? 2457164
邀请新用户注册赠送积分活动 1447790
关于科研通互助平台的介绍 1422988