Aboveground biomass inversion of forestland in a Jinsha River dry-hot valley by integrating high and medium spatial resolution optical images: A case study on Yuanmou County of Southwest China

反演(地质) 图像分辨率 环境科学 中国 遥感 生物量(生态学) 高分辨率 分辨率(逻辑) 地质学 地理 地貌学 计算机科学 人工智能 考古 海洋学 构造盆地
作者
Zihao Liu,Tian‐Bao Huang,Yong Wu,Xiaoli Zhang,Chunxiao Liu,Zhibo Yu,Can Xu,Guanglong Ou
出处
期刊:Ecological Informatics [Elsevier]
卷期号:83: 102796-102796
标识
DOI:10.1016/j.ecoinf.2024.102796
摘要

It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (R2) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tiscen发布了新的文献求助10
1秒前
中中中发布了新的文献求助10
2秒前
劝当代我发布了新的文献求助30
2秒前
3秒前
带头大哥应助肖肖采纳,获得160
5秒前
5秒前
小白发布了新的文献求助10
5秒前
mic完成签到,获得积分10
5秒前
6秒前
的微博发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
10秒前
两栖玩家完成签到 ,获得积分10
10秒前
11秒前
崔梦楠发布了新的文献求助10
12秒前
中中中完成签到,获得积分10
12秒前
LLL发布了新的文献求助10
13秒前
一口一个小朋友完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
20秒前
21秒前
负责雪珊完成签到,获得积分10
21秒前
22秒前
23秒前
科研通AI2S应助霜降采纳,获得10
23秒前
传统的鹏涛完成签到,获得积分10
23秒前
啦啦啦发布了新的文献求助10
24秒前
26秒前
26秒前
正直梦竹发布了新的文献求助30
26秒前
27秒前
蓝蓝蓝发布了新的文献求助10
28秒前
花Cheung完成签到,获得积分10
28秒前
29秒前
duyu完成签到 ,获得积分10
30秒前
充电宝应助活力的如冬采纳,获得10
30秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334825
求助须知:如何正确求助?哪些是违规求助? 2964090
关于积分的说明 8612219
捐赠科研通 2642925
什么是DOI,文献DOI怎么找? 1447066
科研通“疑难数据库(出版商)”最低求助积分说明 670503
邀请新用户注册赠送积分活动 658765