已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Aboveground biomass inversion of forestland in a Jinsha River dry-hot valley by integrating high and medium spatial resolution optical images: A case study on Yuanmou County of Southwest China

反演(地质) 图像分辨率 环境科学 中国 遥感 生物量(生态学) 高分辨率 分辨率(逻辑) 地质学 地理 地貌学 计算机科学 人工智能 考古 海洋学 构造盆地
作者
Zihao Liu,Tian‐Bao Huang,Yong Wu,Xiaoli Zhang,Chunxiao Liu,Zhibo Yu,Can Xu,Guanglong Ou
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:83: 102796-102796
标识
DOI:10.1016/j.ecoinf.2024.102796
摘要

It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (R2) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
clove发布了新的文献求助10
1秒前
浮游应助maowei采纳,获得10
1秒前
木小易完成签到,获得积分10
2秒前
endocrine完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
星辰大海应助ceeray23采纳,获得20
4秒前
小超完成签到,获得积分10
5秒前
晴雨天完成签到 ,获得积分10
7秒前
niuma发布了新的文献求助10
7秒前
斯文败类应助lxy采纳,获得10
7秒前
endocrine发布了新的文献求助10
8秒前
优秀不愁发布了新的文献求助10
9秒前
13秒前
14秒前
英俊的铭应助ceeray23采纳,获得20
14秒前
茉莉完成签到 ,获得积分10
15秒前
酷波er应助clove采纳,获得10
16秒前
信哥哥发布了新的文献求助10
16秒前
16秒前
橙橙橙橙发布了新的文献求助10
17秒前
20秒前
20秒前
Owen应助暮然采纳,获得10
21秒前
22秒前
科研小白发布了新的文献求助10
22秒前
23秒前
王仙人发布了新的文献求助10
24秒前
liu发布了新的文献求助10
25秒前
25秒前
zhang完成签到,获得积分10
26秒前
无花果应助科研小白采纳,获得10
26秒前
红豆盖饭发布了新的文献求助10
29秒前
29秒前
SCI完成签到,获得积分10
29秒前
30秒前
30秒前
30秒前
李健的小迷弟应助xkx采纳,获得10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Atlas of the Rabbit Brain and Spinal Cord 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018389
求助须知:如何正确求助?哪些是违规求助? 4257734
关于积分的说明 13269841
捐赠科研通 4062244
什么是DOI,文献DOI怎么找? 2221850
邀请新用户注册赠送积分活动 1231029
关于科研通互助平台的介绍 1153784