Aboveground biomass inversion of forestland in a Jinsha River dry-hot valley by integrating high and medium spatial resolution optical images: A case study on Yuanmou County of Southwest China

反演(地质) 图像分辨率 环境科学 中国 遥感 生物量(生态学) 高分辨率 分辨率(逻辑) 地质学 地理 地貌学 计算机科学 人工智能 考古 构造盆地 海洋学
作者
Zihao Liu,Tian‐Bao Huang,Yong Wu,Xiaoli Zhang,Chunxiao Liu,Zhibo Yu,Can Xu,Guanglong Ou
出处
期刊:Ecological Informatics [Elsevier]
卷期号:83: 102796-102796
标识
DOI:10.1016/j.ecoinf.2024.102796
摘要

It is crucial to develop a comprehensive method for estimating the aboveground biomass (AGB) of trees, shrubs, grasslands, and sparse tree areas in ecologically fragile dry, hot valley regions with vertical zonation. Multi-source remote-sensing data can fulfill this requirement, providing help in monitoring the health of ecosystems and providing a basis for regional biodiversity conservation and restoration. Sentinel-2A satellite imagery was used to classify the forests, shrubs, and grasslands in Yuanmou County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, China. The Gaofen-2 satellite (GF-2) was used to extract the canopy width and calculate tree biomass in the valley-type savanna region. These data were combined with remote-sensing factors and measured survey data, and random forest (RF) and extreme gradient boosting (XGBoost) models were used to estimate the biomass. Using GF-2 images to segment sparse tree areas effectively reduced the overestimation of low-resolution remote-sensing images, enabling the AGB of sparse trees to be accurately estimated. The biomass estimations based on the Sentinel-2A images attained coefficient of determination (R2) values of 0.45 and 0.47 for the forest, 0.55 and 0.61 for the shrubs, and 0.32 and 0.37 for the grasslands using RF and XGBoost models, respectively, demonstrating variable effectiveness across vegetation types. In addition, the XGBoost model was more robust than the RF model for all three vegetation types. Our methodology provides scientific support for the sustainable development of ecologically fragile dry, hot valleys and savanna areas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hf完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
可爱多完成签到,获得积分10
2秒前
qianlu完成签到 ,获得积分10
3秒前
roro熊发布了新的文献求助10
5秒前
5秒前
幸福台灯发布了新的文献求助10
5秒前
5秒前
章建清完成签到 ,获得积分10
5秒前
Azhe发布了新的文献求助10
6秒前
想发paper的金鱼完成签到,获得积分10
6秒前
周em12_发布了新的文献求助10
7秒前
东邪西毒加任我行完成签到,获得积分10
8秒前
8秒前
8秒前
搜集达人应助细腻含羞草采纳,获得10
10秒前
歪歪关注了科研通微信公众号
11秒前
11秒前
11秒前
无花果应助幸福台灯采纳,获得10
13秒前
灵兰QAQ完成签到,获得积分10
13秒前
戏谑发布了新的文献求助10
13秒前
LW90完成签到,获得积分10
13秒前
Akim应助roro熊采纳,获得10
13秒前
范范发布了新的文献求助30
14秒前
Zp发布了新的文献求助10
15秒前
15秒前
su完成签到,获得积分20
16秒前
17秒前
且放青山远完成签到,获得积分10
19秒前
和谐耳机完成签到 ,获得积分10
21秒前
明理慕灵应助失眠幼珊采纳,获得10
21秒前
星落枝头完成签到,获得积分10
22秒前
23秒前
牙ya发布了新的文献求助10
23秒前
默默的XJ完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565622
求助须知:如何正确求助?哪些是违规求助? 4650680
关于积分的说明 14692351
捐赠科研通 4592670
什么是DOI,文献DOI怎么找? 2519689
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463281