Dual Contrast-Driven Deep Multi-view Clustering

计算机科学 人工智能 聚类分析 对比度(视觉) 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Jinrong Cui,Yuting Li,Han Huang,Jie Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4753-4764 被引量:9
标识
DOI:10.1109/tip.2024.3444269
摘要

Consensus representation learning is one of the most popular approaches in the field of multi-view clustering. However, most of the existing methods cannot learn discriminative representations with a clustering-friendly structure since these methods ignore the separation among clusters and the compactness within each cluster. To tackle this issue, we propose a new deep multi-view clustering network with a dual contrastive mechanism to learn clustering-friendly representations. Specifically, our method employs dual contrasting losses: a dynamic cluster diffusion loss to maximize the distance between different clusters and a reliable neighbor-guided positive alignment loss to enhance compactness within each cluster. Our approach includes several key components: view-specific encoders to extract high-level features from each view, and an adaptive feature fusion strategy to obtain consensus representations across multiple views. The dynamic cluster diffusion module ensures inter-cluster separation by maximizing distances between different clusters in the consensus feature space. Simultaneously, the reliable neighbor-guided positive alignment module improves within-cluster compactness through a pseudo-label and nearest neighbor structure-driven contrastive loss. Experimental results on several datasets show that our method can acquire clustering-friendly representations with both good properties of inter-cluster separation and within-cluster compactness, and outperforms the existing state-of-the-art approaches in clustering performance. Our source code is available at https://github.com/tweety1028/DCMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zgx发布了新的文献求助10
1秒前
i2stay完成签到,获得积分10
1秒前
馒头完成签到,获得积分10
3秒前
MS903完成签到,获得积分10
8秒前
CJW完成签到 ,获得积分10
9秒前
韧迹完成签到 ,获得积分0
9秒前
mmd完成签到 ,获得积分10
9秒前
七一安完成签到 ,获得积分10
10秒前
浪麻麻完成签到 ,获得积分10
14秒前
包容的剑完成签到 ,获得积分10
18秒前
等待的大炮完成签到,获得积分10
18秒前
注水萝卜完成签到 ,获得积分10
20秒前
Chem34完成签到,获得积分10
28秒前
30秒前
量子星尘发布了新的文献求助10
30秒前
hhh2018687完成签到,获得积分10
30秒前
30秒前
31秒前
31秒前
31秒前
31秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
32秒前
嘒彼小星完成签到 ,获得积分10
32秒前
32秒前
33秒前
33秒前
33秒前
33秒前
34秒前
ri_290完成签到,获得积分10
34秒前
35秒前
nsc发布了新的文献求助30
37秒前
nsc发布了新的文献求助10
37秒前
nsc发布了新的文献求助10
37秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022