Dual Contrast-Driven Deep Multi-view Clustering

计算机科学 人工智能 聚类分析 对比度(视觉) 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Jinrong Cui,Yuting Li,Han Huang,Jie Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4753-4764
标识
DOI:10.1109/tip.2024.3444269
摘要

Consensus representation learning is one of the most popular approaches in the field of multi-view clustering. However, most of the existing methods cannot learn discriminative representations with a clustering-friendly structure since these methods ignore the separation among clusters and the compactness within each cluster. To tackle this issue, we propose a new deep multi-view clustering network with a dual contrastive mechanism to learn clustering-friendly representations. Specifically, our method employs dual contrasting losses: a dynamic cluster diffusion loss to maximize the distance between different clusters and a reliable neighbor-guided positive alignment loss to enhance compactness within each cluster. Our approach includes several key components: view-specific encoders to extract high-level features from each view, and an adaptive feature fusion strategy to obtain consensus representations across multiple views. The dynamic cluster diffusion module ensures inter-cluster separation by maximizing distances between different clusters in the consensus feature space. Simultaneously, the reliable neighbor-guided positive alignment module improves within-cluster compactness through a pseudo-label and nearest neighbor structure-driven contrastive loss. Experimental results on several datasets show that our method can acquire clustering-friendly representations with both good properties of inter-cluster separation and within-cluster compactness, and outperforms the existing state-of-the-art approaches in clustering performance. Our source code is available at https://github.com/tweety1028/DCMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
和谐初南发布了新的文献求助10
刚刚
明亮灭绝完成签到,获得积分10
1秒前
王白纸发布了新的文献求助10
2秒前
3秒前
lucilleshen发布了新的文献求助10
3秒前
怀挺啊完成签到,获得积分10
4秒前
汕头凯奇发布了新的文献求助10
6秒前
可爱的函函应助霍华淞采纳,获得10
6秒前
Akim应助年华采纳,获得10
6秒前
醉舞烟罗发布了新的文献求助10
8秒前
天天快乐应助xxxhl采纳,获得10
10秒前
么么发布了新的文献求助10
12秒前
12秒前
霍华淞完成签到,获得积分10
12秒前
12秒前
14秒前
加油加油发布了新的文献求助10
14秒前
过眼云烟发布了新的文献求助30
14秒前
17秒前
lucilleshen完成签到,获得积分10
19秒前
tfq200发布了新的文献求助30
19秒前
277777发布了新的文献求助10
22秒前
23秒前
称心的问安完成签到,获得积分10
23秒前
Zoeyz发布了新的文献求助30
25秒前
李平进完成签到,获得积分10
26秒前
过眼云烟完成签到,获得积分10
27秒前
28秒前
汕头凯奇发布了新的文献求助10
29秒前
tuanheqi应助123采纳,获得30
31秒前
33秒前
科目三应助玉玉采纳,获得10
34秒前
天天天晴完成签到,获得积分10
35秒前
hong应助研友_xnEOX8采纳,获得30
37秒前
38秒前
香蕉觅云应助TT2022采纳,获得10
39秒前
张亚慧完成签到 ,获得积分10
39秒前
yayan发布了新的文献求助10
40秒前
多看文献发布了新的文献求助10
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267613
求助须知:如何正确求助?哪些是违规求助? 2907076
关于积分的说明 8340494
捐赠科研通 2577712
什么是DOI,文献DOI怎么找? 1401218
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 633967