Dual Contrast-Driven Deep Multi-view Clustering

计算机科学 人工智能 聚类分析 对比度(视觉) 对偶(语法数字) 模式识别(心理学) 计算机视觉 文学类 艺术
作者
Jinrong Cui,Yuting Li,Han Huang,Jie Wen
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4753-4764
标识
DOI:10.1109/tip.2024.3444269
摘要

Consensus representation learning is one of the most popular approaches in the field of multi-view clustering. However, most of the existing methods cannot learn discriminative representations with a clustering-friendly structure since these methods ignore the separation among clusters and the compactness within each cluster. To tackle this issue, we propose a new deep multi-view clustering network with a dual contrastive mechanism to learn clustering-friendly representations. Specifically, our method employs dual contrasting losses: a dynamic cluster diffusion loss to maximize the distance between different clusters and a reliable neighbor-guided positive alignment loss to enhance compactness within each cluster. Our approach includes several key components: view-specific encoders to extract high-level features from each view, and an adaptive feature fusion strategy to obtain consensus representations across multiple views. The dynamic cluster diffusion module ensures inter-cluster separation by maximizing distances between different clusters in the consensus feature space. Simultaneously, the reliable neighbor-guided positive alignment module improves within-cluster compactness through a pseudo-label and nearest neighbor structure-driven contrastive loss. Experimental results on several datasets show that our method can acquire clustering-friendly representations with both good properties of inter-cluster separation and within-cluster compactness, and outperforms the existing state-of-the-art approaches in clustering performance. Our source code is available at https://github.com/tweety1028/DCMVC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Natsu完成签到,获得积分10
刚刚
马保国123发布了新的文献求助10
1秒前
丘比特应助无限的隶采纳,获得10
1秒前
在云里爱与歌完成签到,获得积分10
2秒前
迟大猫应助研究生采纳,获得10
2秒前
可行完成签到,获得积分10
2秒前
2秒前
yuhui完成签到,获得积分10
2秒前
3秒前
pi发布了新的文献求助10
3秒前
3秒前
小蘑菇应助科研菜鸟采纳,获得10
4秒前
Owen应助晚风采纳,获得10
4秒前
小二郎应助Jiangnj采纳,获得10
4秒前
微信研友完成签到,获得积分10
4秒前
科研通AI5应助陈杰采纳,获得10
4秒前
5秒前
Jasper应助含糊采纳,获得10
5秒前
dfggg发布了新的文献求助10
5秒前
跑在颖发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
yatou5651发布了新的文献求助10
5秒前
6秒前
乐乐应助koi采纳,获得10
6秒前
asdfqwer发布了新的文献求助10
6秒前
6秒前
chemhub完成签到,获得积分10
6秒前
杜杜完成签到,获得积分10
7秒前
周小慧发布了新的文献求助10
7秒前
7秒前
自由寻菱完成签到 ,获得积分10
7秒前
8秒前
Akim应助丘奇采纳,获得10
9秒前
美丽小蕾发布了新的文献求助10
9秒前
dingdong发布了新的文献求助10
9秒前
ZX完成签到 ,获得积分10
9秒前
九川发布了新的文献求助10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762