Neural-network-based hardware trojan attack prediction and security defense mechanism in optical networks-on-chip

特洛伊木马 计算机科学 炸薯条 硬件特洛伊木马 机制(生物学) 嵌入式系统 人工神经网络 计算机安全 计算机网络 电信 人工智能 认识论 哲学
作者
Xiangyu He,Pengxing Guo,Jiahao Zhou,J. Li,Fan Zhang,Weigang Hou,Lei Guo
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:16 (9): 881-881
标识
DOI:10.1364/jocn.519470
摘要

Optical networks-on-chip (ONoCs) have emerged as a compelling platform for many-core systems owing to their notable attributes, including high bandwidth, low latency, and energy efficiency. Nonetheless, the integration of microring resonators (MRs) in ONoCs exposes them to vulnerabilities associated with hardware trojans (HTs). In response, we propose an innovative strategy that combines deep-learning-based HT attack prediction with a robust security defense mechanism to fortify the resilience of ONoCs. For HT attack prediction, we employ a multiple-inputs and multiple-outputs long short-term memory neural network model. This model serves to identify susceptible MRs by forecasting alterations in traffic patterns and detecting internal faults within optical routing nodes. On the defensive front, we introduce a fine-grained defense mechanism based on MR faults. This mechanism effectively thwarts HTs during the optical routing process, thereby optimizing node utilization in ONoCs while concurrently upholding security and reliability. Simulation outcomes underscore the efficacy of the proposed HT attack prediction mechanism, demonstrating high accuracy with a loss rate of less than 0.7%. The measured mean absolute error and root mean squared error stand at 0.045 and 0.07, respectively. Furthermore, when compared to conventional coarse-grained node-based defense algorithms, our solution achieves noteworthy reductions of up to 16.2%, 43.72%, and 44.86% in packet loss rate, insertion loss, and crosstalk noise, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
难过千易发布了新的文献求助10
刚刚
王若琪发布了新的文献求助10
1秒前
2秒前
天易车网官网完成签到,获得积分20
2秒前
舆上帝同行完成签到,获得积分10
2秒前
李健应助棒棒糖采纳,获得30
3秒前
4秒前
5秒前
5秒前
zixian发布了新的文献求助10
6秒前
7秒前
孙晓婷完成签到,获得积分10
7秒前
慕青应助典雅的土豆采纳,获得10
7秒前
8秒前
nj发布了新的文献求助10
8秒前
9秒前
9秒前
lalala发布了新的文献求助20
10秒前
11秒前
Ale发布了新的文献求助10
11秒前
11秒前
许安完成签到,获得积分10
11秒前
12秒前
李爱国应助blackcatcaptain采纳,获得10
12秒前
就是嘀咕完成签到,获得积分10
12秒前
sssssssss完成签到,获得积分10
13秒前
过时的不愁完成签到,获得积分10
13秒前
逢陈发布了新的文献求助10
14秒前
zj发布了新的文献求助10
14秒前
14秒前
dwls完成签到,获得积分10
15秒前
隐形曼青应助Ale采纳,获得10
15秒前
SciGPT应助水果采纳,获得30
16秒前
16秒前
NexusExplorer应助勤劳的音响采纳,获得10
17秒前
彭于晏应助朽木采纳,获得10
17秒前
ppll3906发布了新的文献求助10
17秒前
18秒前
安安发布了新的文献求助10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975165
求助须知:如何正确求助?哪些是违规求助? 3519595
关于积分的说明 11198781
捐赠科研通 3255912
什么是DOI,文献DOI怎么找? 1798001
邀请新用户注册赠送积分活动 877343
科研通“疑难数据库(出版商)”最低求助积分说明 806298