Neural-network-based hardware trojan attack prediction and security defense mechanism in optical networks-on-chip

特洛伊木马 计算机科学 炸薯条 硬件特洛伊木马 机制(生物学) 嵌入式系统 人工神经网络 计算机安全 计算机网络 电信 人工智能 认识论 哲学
作者
Xiangyu He,Pengxing Guo,Jiahao Zhou,J. Li,Fan Zhang,Weigang Hou,Lei Guo
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:16 (9): 881-881
标识
DOI:10.1364/jocn.519470
摘要

Optical networks-on-chip (ONoCs) have emerged as a compelling platform for many-core systems owing to their notable attributes, including high bandwidth, low latency, and energy efficiency. Nonetheless, the integration of microring resonators (MRs) in ONoCs exposes them to vulnerabilities associated with hardware trojans (HTs). In response, we propose an innovative strategy that combines deep-learning-based HT attack prediction with a robust security defense mechanism to fortify the resilience of ONoCs. For HT attack prediction, we employ a multiple-inputs and multiple-outputs long short-term memory neural network model. This model serves to identify susceptible MRs by forecasting alterations in traffic patterns and detecting internal faults within optical routing nodes. On the defensive front, we introduce a fine-grained defense mechanism based on MR faults. This mechanism effectively thwarts HTs during the optical routing process, thereby optimizing node utilization in ONoCs while concurrently upholding security and reliability. Simulation outcomes underscore the efficacy of the proposed HT attack prediction mechanism, demonstrating high accuracy with a loss rate of less than 0.7%. The measured mean absolute error and root mean squared error stand at 0.045 and 0.07, respectively. Furthermore, when compared to conventional coarse-grained node-based defense algorithms, our solution achieves noteworthy reductions of up to 16.2%, 43.72%, and 44.86% in packet loss rate, insertion loss, and crosstalk noise, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
rakuyo发布了新的文献求助10
刚刚
guo发布了新的文献求助10
刚刚
芜湖发布了新的文献求助10
1秒前
开心人达发布了新的文献求助10
1秒前
1秒前
cchi完成签到,获得积分10
1秒前
1秒前
橙花完成签到 ,获得积分10
2秒前
帅气的小鸭子完成签到,获得积分10
2秒前
顺利萧发布了新的文献求助10
2秒前
2秒前
哈哈应助11采纳,获得10
3秒前
ding应助GJL采纳,获得10
3秒前
3秒前
XL神放发布了新的文献求助30
3秒前
HH发布了新的文献求助10
3秒前
sx发布了新的文献求助10
5秒前
6秒前
旷野发布了新的文献求助10
6秒前
zz完成签到,获得积分20
6秒前
7秒前
CipherSage应助guo采纳,获得10
8秒前
Jasper应助dd采纳,获得10
9秒前
夜斗发布了新的文献求助10
10秒前
SciGPT应助开心人达采纳,获得10
10秒前
qqqq22完成签到,获得积分10
10秒前
水木应助忧心的涵菡采纳,获得10
10秒前
典雅碧空应助小涛采纳,获得10
11秒前
11秒前
小雨完成签到,获得积分10
12秒前
12秒前
Lu完成签到,获得积分10
13秒前
13秒前
kecheng应助lalala采纳,获得10
13秒前
言亦云应助minus采纳,获得10
14秒前
14秒前
NexusExplorer应助锦七采纳,获得10
14秒前
14秒前
15秒前
脑洞疼应助自信大雁采纳,获得10
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836