Neural-network-based hardware trojan attack prediction and security defense mechanism in optical networks-on-chip

特洛伊木马 计算机科学 炸薯条 硬件特洛伊木马 机制(生物学) 嵌入式系统 人工神经网络 计算机安全 计算机网络 电信 人工智能 认识论 哲学
作者
Xiangyu He,Pengxing Guo,Jiahao Zhou,J. Li,Fan Zhang,Weigang Hou,Lei Guo
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:16 (9): 881-881
标识
DOI:10.1364/jocn.519470
摘要

Optical networks-on-chip (ONoCs) have emerged as a compelling platform for many-core systems owing to their notable attributes, including high bandwidth, low latency, and energy efficiency. Nonetheless, the integration of microring resonators (MRs) in ONoCs exposes them to vulnerabilities associated with hardware trojans (HTs). In response, we propose an innovative strategy that combines deep-learning-based HT attack prediction with a robust security defense mechanism to fortify the resilience of ONoCs. For HT attack prediction, we employ a multiple-inputs and multiple-outputs long short-term memory neural network model. This model serves to identify susceptible MRs by forecasting alterations in traffic patterns and detecting internal faults within optical routing nodes. On the defensive front, we introduce a fine-grained defense mechanism based on MR faults. This mechanism effectively thwarts HTs during the optical routing process, thereby optimizing node utilization in ONoCs while concurrently upholding security and reliability. Simulation outcomes underscore the efficacy of the proposed HT attack prediction mechanism, demonstrating high accuracy with a loss rate of less than 0.7%. The measured mean absolute error and root mean squared error stand at 0.045 and 0.07, respectively. Furthermore, when compared to conventional coarse-grained node-based defense algorithms, our solution achieves noteworthy reductions of up to 16.2%, 43.72%, and 44.86% in packet loss rate, insertion loss, and crosstalk noise, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏一曲完成签到 ,获得积分10
刚刚
荒野风发布了新的文献求助10
刚刚
轻松的鸿煊完成签到 ,获得积分10
1秒前
NCU-Xzzzz发布了新的文献求助10
1秒前
3秒前
JJG完成签到,获得积分20
4秒前
Hello应助Tiam采纳,获得10
5秒前
5秒前
ty完成签到,获得积分10
7秒前
zehua309完成签到,获得积分10
8秒前
火星上含芙完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
掌门发布了新的文献求助10
11秒前
愉快的花卷完成签到,获得积分10
11秒前
少言完成签到,获得积分10
13秒前
kiko完成签到,获得积分10
14秒前
隐形惜筠完成签到 ,获得积分10
16秒前
黑眼圈完成签到,获得积分10
20秒前
123发布了新的文献求助10
22秒前
23秒前
24秒前
又又妈妈完成签到,获得积分10
24秒前
欢呼的丁真完成签到,获得积分10
25秒前
ty发布了新的文献求助10
25秒前
Faded完成签到 ,获得积分10
26秒前
ding应助Amorfati采纳,获得10
26秒前
好好学习天天向上完成签到,获得积分10
27秒前
所所应助lh采纳,获得10
28秒前
李爱国应助深情丸子采纳,获得10
28秒前
烟花应助阿湫采纳,获得10
28秒前
28秒前
乌梅不乌发布了新的文献求助10
29秒前
29秒前
YY完成签到,获得积分10
30秒前
31秒前
31秒前
Tiam发布了新的文献求助10
31秒前
种花家的狗狗完成签到,获得积分10
31秒前
wisdom完成签到,获得积分10
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038524
求助须知:如何正确求助?哪些是违规求助? 3576221
关于积分的说明 11374737
捐赠科研通 3305912
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892688
科研通“疑难数据库(出版商)”最低求助积分说明 815048