Neural-network-based hardware trojan attack prediction and security defense mechanism in optical networks-on-chip

特洛伊木马 计算机科学 炸薯条 硬件特洛伊木马 机制(生物学) 嵌入式系统 人工神经网络 计算机安全 计算机网络 电信 人工智能 哲学 认识论
作者
Xiangyu He,Pengxing Guo,Jiahao Zhou,J. Li,Fan Zhang,Weigang Hou,Lei Guo
出处
期刊:Journal of Optical Communications and Networking [The Optical Society]
卷期号:16 (9): 881-881
标识
DOI:10.1364/jocn.519470
摘要

Optical networks-on-chip (ONoCs) have emerged as a compelling platform for many-core systems owing to their notable attributes, including high bandwidth, low latency, and energy efficiency. Nonetheless, the integration of microring resonators (MRs) in ONoCs exposes them to vulnerabilities associated with hardware trojans (HTs). In response, we propose an innovative strategy that combines deep-learning-based HT attack prediction with a robust security defense mechanism to fortify the resilience of ONoCs. For HT attack prediction, we employ a multiple-inputs and multiple-outputs long short-term memory neural network model. This model serves to identify susceptible MRs by forecasting alterations in traffic patterns and detecting internal faults within optical routing nodes. On the defensive front, we introduce a fine-grained defense mechanism based on MR faults. This mechanism effectively thwarts HTs during the optical routing process, thereby optimizing node utilization in ONoCs while concurrently upholding security and reliability. Simulation outcomes underscore the efficacy of the proposed HT attack prediction mechanism, demonstrating high accuracy with a loss rate of less than 0.7%. The measured mean absolute error and root mean squared error stand at 0.045 and 0.07, respectively. Furthermore, when compared to conventional coarse-grained node-based defense algorithms, our solution achieves noteworthy reductions of up to 16.2%, 43.72%, and 44.86% in packet loss rate, insertion loss, and crosstalk noise, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酷酷的紫南完成签到 ,获得积分10
1秒前
迷人凡旋完成签到,获得积分20
1秒前
JamesPei应助大李包采纳,获得10
1秒前
1秒前
天涯完成签到 ,获得积分10
2秒前
shr完成签到,获得积分10
2秒前
落后以旋完成签到,获得积分10
2秒前
小二郎应助缚大哥采纳,获得10
2秒前
充电宝应助青木蓝采纳,获得10
3秒前
云中渊发布了新的文献求助10
3秒前
冷静的毛豆完成签到,获得积分10
3秒前
涵Allen完成签到 ,获得积分10
3秒前
思源应助wzxxxx采纳,获得10
3秒前
隐形曼青应助shelly0621采纳,获得10
4秒前
无敌鱼发布了新的文献求助10
4秒前
5秒前
meimei完成签到,获得积分10
5秒前
朴实的薯片完成签到,获得积分10
6秒前
way完成签到,获得积分10
7秒前
脑洞疼应助Chan0501采纳,获得10
8秒前
fancy完成签到 ,获得积分10
8秒前
Maglev发布了新的文献求助10
9秒前
9秒前
含糊的代丝完成签到 ,获得积分10
9秒前
9秒前
10秒前
小九发布了新的文献求助20
10秒前
zhui发布了新的文献求助10
11秒前
通达完成签到,获得积分10
12秒前
FashionBoy应助猪猪hero采纳,获得10
12秒前
jy发布了新的文献求助10
12秒前
祥云完成签到,获得积分10
12秒前
无敌鱼完成签到,获得积分10
13秒前
ffu完成签到 ,获得积分10
13秒前
天天快乐应助好的采纳,获得10
13秒前
13秒前
香蕉觅云应助科研小白花采纳,获得10
13秒前
18746005898发布了新的文献求助10
14秒前
科研通AI5应助fanfan44390采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794