Construction and application of fetal loss risk model in systemic lupus erythematosus patients with mild disease severity

列线图 医学 接收机工作特性 曲线下面积 狼疮性肾炎 置信区间 内科学 逻辑回归 系统性红斑狼疮 疾病
作者
Yanran Chen,Yanjuan Chen,Bo Li,Wendao Xu,Pei-Pei Lei,Hongyang Liu,Dong‐Zhou Liu,Xiaoping Hong
出处
期刊:BMC Pregnancy and Childbirth [Springer Nature]
卷期号:24 (1)
标识
DOI:10.1186/s12884-024-06679-6
摘要

Abstract Background This dynamic nomogram model was developed to predict the probability of fetal loss in pregnant patients with systemic lupus erythematosus (SLE) with mild disease severity before conception. Methods An analysis was conducted on 314 pregnancy records of patients with SLE who were hospitalized between January 2015 and January 2022 at Shenzhen People's Hospital, and the Longhua Branch of Shenzhen People's Hospital. Data from the Longhua Branch of the Shenzhen People's Hospital were utilized as an independent external validation cohort. The nomogram, a widely used statistical visualization tool to predict disease onset, progression, prognosis, and survival, was created after feature selection using multivariate logistic regression analysis. To evaluate the model prediction performance, we employed the receiver operating characteristic curve, calibration curve, and decision curve analysis. Results Lupus nephritis, complement 3, immunoglobulin G, serum albumin, C-reactive protein, and hydroxychloroquine were all included in the nomogram model. The model demonstrated good calibration and discriminatory power, with an area under the curve of 0.867 (95% confidence interval: 0.787–0.947). According to decision curve analysis, the nomogram model exhibited clinical importance when the probability of fetal loss in patients with SLE ranged between 10 and 70%. The predictive ability of the model was demonstrated through external validation. Conclusion The predictive nomogram approach may facilitate precise management of pregnant patients with SLE with mild disease severity before conception.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dxtmm发布了新的文献求助10
2秒前
小谭完成签到 ,获得积分10
2秒前
3秒前
英姑应助xiangdan采纳,获得10
3秒前
sunianjinshi发布了新的文献求助20
4秒前
彭于晏应助中中采纳,获得10
4秒前
4秒前
4秒前
番茄发布了新的文献求助10
8秒前
样子发布了新的文献求助10
8秒前
蔺天宇完成签到,获得积分10
9秒前
magicyouyou发布了新的文献求助20
9秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
贰鸟应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
完美世界应助科研通管家采纳,获得10
12秒前
彭于晏应助科研通管家采纳,获得10
12秒前
janarbek应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
zzszy发布了新的文献求助10
13秒前
zzjj发布了新的文献求助10
14秒前
yy完成签到,获得积分10
14秒前
传奇3应助样子采纳,获得10
15秒前
852应助肖雪依采纳,获得30
15秒前
学术废物发布了新的文献求助10
16秒前
17秒前
18秒前
番茄完成签到,获得积分10
21秒前
22秒前
张柔完成签到 ,获得积分10
22秒前
王治豪发布了新的文献求助10
22秒前
123完成签到,获得积分10
23秒前
Chen发布了新的文献求助10
23秒前
wyn发布了新的文献求助80
24秒前
SIN完成签到,获得积分20
24秒前
24秒前
26秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142138
求助须知:如何正确求助?哪些是违规求助? 2793085
关于积分的说明 7805514
捐赠科研通 2449427
什么是DOI,文献DOI怎么找? 1303274
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291