Langevin Dynamics Based Algorithm e-THεO POULA for Stochastic Optimization Problems with Discontinuous Stochastic Gradient

朗之万动力 数学 动力学(音乐) 随机优化 算法 数学优化 应用数学 统计 物理 声学
作者
Dong‐Young Lim,Ariel Neufeld,Sotirios Sabanis,Ying Zhang
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/moor.2022.0307
摘要

We introduce a new Langevin dynamics based algorithm, called the extended tamed hybrid ε-order polygonal unadjusted Langevin algorithm (e-THεO POULA), to solve optimization problems with discontinuous stochastic gradients, which naturally appear in real-world applications such as quantile estimation, vector quantization, conditional value at risk (CVaR) minimization, and regularized optimization problems involving rectified linear unit (ReLU) neural networks. We demonstrate both theoretically and numerically the applicability of the e-THεO POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish nonasymptotic error bounds for e-THεO POULA in Wasserstein distances and provide a nonasymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multiperiod portfolio optimization, transfer learning in multiperiod portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world data sets illustrate the superior empirical performance of e-THεO POULA compared with SGLD (stochastic gradient Langevin dynamics), TUSLA (tamed unadjusted stochastic Langevin algorithm), adaptive moment estimation, and Adaptive Moment Estimation with a Strongly Non-Convex Decaying Learning Rate in terms of model accuracy. Funding: Financial support was provided by the Alan Turing Institute, London, under the Engineering and Physical Sciences Research Council [Grant EP/N510129/1]; the Ministry of Education of Singapore Academic Research Fund [Tier 2 Grant MOE-T2EP20222-0013]; the European Union’s Horizon 2020 Research and Innovation Programme [Marie Skłodowska-Curie Grant Agreement 801215]; the University of Edinburgh’s Data-Driven Innovation Programme, part of the Edinburgh and South East Scotland City Region Deal; an Institute of Information and Communications Technology Planning and Evaluation grant funded by the Korean Ministry of Science and ICT (MIST) [Grant 2020-0-01336]; the Artificial Intelligence Graduate School Program of the Ulsan National Institute of Science and Technology; a National Research Foundation of Korea grant funded by the Korean government (MSIT) [Grant RS-2023-00253002]; and the Guangzhou–Hong Kong University of Science and Technology (Guangzhou) Joint Funding Program [Grant 2024A03J0630].

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天明完成签到,获得积分10
2秒前
2秒前
zchen03完成签到,获得积分10
3秒前
滋达不溜完成签到,获得积分10
4秒前
5秒前
DyLan完成签到,获得积分10
5秒前
大军门诊完成签到,获得积分10
5秒前
西松屋地铁完成签到 ,获得积分10
5秒前
山山而川完成签到,获得积分10
6秒前
TG_FY完成签到,获得积分10
6秒前
华桦子完成签到 ,获得积分10
6秒前
灵犀完成签到,获得积分10
6秒前
单纯的海云完成签到 ,获得积分10
7秒前
冷语完成签到,获得积分10
7秒前
jin_strive完成签到,获得积分0
8秒前
8秒前
N维完成签到,获得积分10
10秒前
强壮的丸子完成签到,获得积分10
10秒前
wuyu完成签到,获得积分10
10秒前
明天发布了新的文献求助10
11秒前
YYY完成签到,获得积分10
12秒前
rythm完成签到,获得积分10
12秒前
胡已疯应助现代宝宝采纳,获得10
13秒前
蘑菇浣熊发布了新的文献求助10
13秒前
13秒前
酸奶冻完成签到,获得积分10
14秒前
左右兮完成签到,获得积分10
14秒前
眼睛大的电脑完成签到,获得积分10
14秒前
cesar完成签到,获得积分10
15秒前
殷勤的梦秋完成签到,获得积分10
16秒前
Lemon应助科研通管家采纳,获得10
16秒前
天天快乐应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
yufanhui应助wuyu采纳,获得10
16秒前
华仔应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
Lemon应助科研通管家采纳,获得10
16秒前
Lemon应助科研通管家采纳,获得10
16秒前
charry完成签到,获得积分10
16秒前
甄人达完成签到,获得积分10
17秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413541
求助须知:如何正确求助?哪些是违规求助? 3015852
关于积分的说明 8872468
捐赠科研通 2703611
什么是DOI,文献DOI怎么找? 1482376
科研通“疑难数据库(出版商)”最低求助积分说明 685266
邀请新用户注册赠送积分活动 679994