Identifying key predictive features for live birth rate in advanced maternal age patients undergoing single vitrified-warmed blastocyst transfer

胚泡移植 单胚胎移植 胚泡 生殖医学 活产 医学 男科 胚胎移植 怀孕 生物 胚胎 胚胎发生 遗传学 细胞生物学
作者
Lidan Liu,Zhihua Wang,Ming Liao,Qiuying Gan,Qianyi Huang,Yihua Yang
出处
期刊:Reproductive Biology and Endocrinology [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12958-024-01295-7
摘要

Infertility affects one in six couples worldwide, with advanced maternal age (AMA) posing unique challenges due to diminished ovarian reserve and reduced oocyte quality. Single vitrified-warmed blastocyst transfer (SVBT) has shown promise in assisted reproductive technology (ART), but success rates in AMA patients remain suboptimal. This study aimed to identify and refine predictive factors for live birth following SVBT in AMA patients, with the goal of enhancing clinical decision-making and enabling personalized treatment strategies. This retrospective cohort study analyzed 1,168 SVBT cycles conducted between June 2016 and December 2022 at the First Affiliated Hospital of Guangxi Medical University and Nanning Maternity and Child Health Hospital. Nineteen machine-learning models were applied to identify key predictive factors for live birth. Feature selection and 10-fold cross-validation were employed to validate the models. The most significant predictors of live birth included inner cell mass quality, trophectoderm quality, number of oocytes retrieved, endometrial thickness, and the presence of 8-cell blastomeres on day 3. The stacking model demonstrated the best predictive performance (AUC: 0.791), followed by Extra Trees (AUC: 0.784) and Random Forest (AUC: 0.768). These models outperformed traditional methods, achieving superior accuracy, sensitivity, and specificity. Leveraging advanced machine-learning models and identifying critical predictive factors can improve the accuracy of live birth outcome predictions for AMA patients undergoing SVBT. These findings offer valuable insights for enhancing clinical decision-making and managing patient expectations. Further research is needed to validate these results in larger, multi-center cohorts and to explore additional factors, including fresh embryo transfers, to broaden the applicability of these models in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助lin采纳,获得10
刚刚
刚刚
Lucas应助张姚采纳,获得10
刚刚
刚刚
赵振辉发布了新的文献求助10
刚刚
星辰大海应助科研小花狗采纳,获得10
1秒前
4秒前
Shubin828发布了新的文献求助10
4秒前
Tingting完成签到 ,获得积分10
7秒前
haifeng发布了新的文献求助10
7秒前
瘦瘦白薇完成签到,获得积分10
8秒前
科研通AI6应助cc采纳,获得10
8秒前
科研通AI6应助cc采纳,获得10
8秒前
cliff139完成签到,获得积分10
10秒前
11秒前
爆米花应助小易采纳,获得10
13秒前
zw发布了新的文献求助10
16秒前
嘛呱发布了新的文献求助10
17秒前
18秒前
19秒前
星辰坠于海完成签到,获得积分0
21秒前
大洋葱发布了新的文献求助10
22秒前
共享精神应助缓慢含烟采纳,获得10
23秒前
FFFF发布了新的文献求助10
24秒前
24秒前
longyk完成签到,获得积分10
25秒前
25秒前
26秒前
无私雁菱应助Li采纳,获得10
26秒前
27秒前
29秒前
31秒前
小易发布了新的文献求助10
31秒前
Dr桃桃发布了新的文献求助10
32秒前
哲别发布了新的文献求助10
32秒前
香蕉觅云应助longyk采纳,获得10
33秒前
orixero应助鲜艳的芹采纳,获得10
33秒前
科研通AI6应助LIJIngcan采纳,获得10
34秒前
缓慢含烟发布了新的文献求助10
35秒前
Shubin828完成签到,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866