已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying key predictive features for live birth rate in advanced maternal age patients undergoing single vitrified-warmed blastocyst transfer

胚泡移植 单胚胎移植 胚泡 生殖医学 活产 医学 男科 胚胎移植 怀孕 生物 胚胎 胚胎发生 遗传学 细胞生物学
作者
Lidan Liu,Zhihua Wang,Ming Liao,Qiuying Gan,Qianyi Huang,Yihua Yang
出处
期刊:Reproductive Biology and Endocrinology [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12958-024-01295-7
摘要

Infertility affects one in six couples worldwide, with advanced maternal age (AMA) posing unique challenges due to diminished ovarian reserve and reduced oocyte quality. Single vitrified-warmed blastocyst transfer (SVBT) has shown promise in assisted reproductive technology (ART), but success rates in AMA patients remain suboptimal. This study aimed to identify and refine predictive factors for live birth following SVBT in AMA patients, with the goal of enhancing clinical decision-making and enabling personalized treatment strategies. This retrospective cohort study analyzed 1,168 SVBT cycles conducted between June 2016 and December 2022 at the First Affiliated Hospital of Guangxi Medical University and Nanning Maternity and Child Health Hospital. Nineteen machine-learning models were applied to identify key predictive factors for live birth. Feature selection and 10-fold cross-validation were employed to validate the models. The most significant predictors of live birth included inner cell mass quality, trophectoderm quality, number of oocytes retrieved, endometrial thickness, and the presence of 8-cell blastomeres on day 3. The stacking model demonstrated the best predictive performance (AUC: 0.791), followed by Extra Trees (AUC: 0.784) and Random Forest (AUC: 0.768). These models outperformed traditional methods, achieving superior accuracy, sensitivity, and specificity. Leveraging advanced machine-learning models and identifying critical predictive factors can improve the accuracy of live birth outcome predictions for AMA patients undergoing SVBT. These findings offer valuable insights for enhancing clinical decision-making and managing patient expectations. Further research is needed to validate these results in larger, multi-center cohorts and to explore additional factors, including fresh embryo transfers, to broaden the applicability of these models in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuan完成签到,获得积分10
3秒前
在水一方应助芳芳采纳,获得10
6秒前
SciGPT应助昭奚采纳,获得10
6秒前
木子发布了新的文献求助10
6秒前
科研通AI2S应助xuan采纳,获得20
9秒前
李键刚完成签到 ,获得积分10
11秒前
11秒前
cyy1226完成签到,获得积分10
15秒前
15秒前
111完成签到 ,获得积分10
16秒前
类类完成签到,获得积分10
17秒前
天天快乐应助jinlioze采纳,获得30
18秒前
Newclear发布了新的文献求助10
20秒前
乔杰完成签到 ,获得积分10
21秒前
22秒前
luo发布了新的文献求助10
22秒前
邱邱给邱邱的求助进行了留言
24秒前
kuki完成签到,获得积分10
27秒前
28秒前
陶醉聪展完成签到 ,获得积分10
29秒前
xgs发布了新的文献求助30
29秒前
老实的逊发布了新的文献求助10
32秒前
34秒前
linl发布了新的文献求助10
34秒前
37秒前
Alex发布了新的文献求助10
37秒前
xixia发布了新的文献求助10
37秒前
linl完成签到,获得积分10
39秒前
42秒前
Lucas应助AR采纳,获得10
42秒前
研友_GZb9an发布了新的文献求助10
44秒前
44秒前
搜集达人应助linl采纳,获得10
44秒前
沙漠之舟完成签到 ,获得积分10
44秒前
Jasper应助爱听歌凤灵采纳,获得10
45秒前
45秒前
典雅夏之发布了新的文献求助100
46秒前
昭奚发布了新的文献求助10
47秒前
漂亮的亦丝完成签到,获得积分10
48秒前
高分求助中
Histotechnology: A Self-Instructional Text 5th Edition 2000
Effect of reactor temperature on FCC yield 1700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
Production Logging: Theoretical and Interpretive Elements 555
电解铜箔实用技术手册 540
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3283721
求助须知:如何正确求助?哪些是违规求助? 2921414
关于积分的说明 8406204
捐赠科研通 2592961
什么是DOI,文献DOI怎么找? 1413586
科研通“疑难数据库(出版商)”最低求助积分说明 658527
邀请新用户注册赠送积分活动 640307