Identifying key predictive features for live birth rate in advanced maternal age patients undergoing single vitrified-warmed blastocyst transfer

胚泡移植 单胚胎移植 胚泡 生殖医学 活产 医学 男科 胚胎移植 怀孕 生物 胚胎 胚胎发生 遗传学 细胞生物学
作者
Lidan Liu,Zhihua Wang,Ming Liao,Qiuying Gan,Qianyi Huang,Yihua Yang
出处
期刊:Reproductive Biology and Endocrinology [Springer Nature]
卷期号:22 (1)
标识
DOI:10.1186/s12958-024-01295-7
摘要

Infertility affects one in six couples worldwide, with advanced maternal age (AMA) posing unique challenges due to diminished ovarian reserve and reduced oocyte quality. Single vitrified-warmed blastocyst transfer (SVBT) has shown promise in assisted reproductive technology (ART), but success rates in AMA patients remain suboptimal. This study aimed to identify and refine predictive factors for live birth following SVBT in AMA patients, with the goal of enhancing clinical decision-making and enabling personalized treatment strategies. This retrospective cohort study analyzed 1,168 SVBT cycles conducted between June 2016 and December 2022 at the First Affiliated Hospital of Guangxi Medical University and Nanning Maternity and Child Health Hospital. Nineteen machine-learning models were applied to identify key predictive factors for live birth. Feature selection and 10-fold cross-validation were employed to validate the models. The most significant predictors of live birth included inner cell mass quality, trophectoderm quality, number of oocytes retrieved, endometrial thickness, and the presence of 8-cell blastomeres on day 3. The stacking model demonstrated the best predictive performance (AUC: 0.791), followed by Extra Trees (AUC: 0.784) and Random Forest (AUC: 0.768). These models outperformed traditional methods, achieving superior accuracy, sensitivity, and specificity. Leveraging advanced machine-learning models and identifying critical predictive factors can improve the accuracy of live birth outcome predictions for AMA patients undergoing SVBT. These findings offer valuable insights for enhancing clinical decision-making and managing patient expectations. Further research is needed to validate these results in larger, multi-center cohorts and to explore additional factors, including fresh embryo transfers, to broaden the applicability of these models in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Suraim完成签到,获得积分10
1秒前
1秒前
Suc完成签到,获得积分10
1秒前
1秒前
ce完成签到,获得积分10
1秒前
化学民工发布了新的文献求助10
2秒前
李健应助Genius采纳,获得10
2秒前
2秒前
小葛发布了新的文献求助10
2秒前
Liuxiaoliu完成签到 ,获得积分10
3秒前
铁观音完成签到,获得积分10
3秒前
3秒前
活泼学生发布了新的文献求助10
3秒前
无极微光应助Kinspact采纳,获得20
4秒前
4秒前
脑洞疼应助vane采纳,获得30
4秒前
木易北北完成签到,获得积分20
5秒前
书双发布了新的文献求助10
5秒前
6秒前
北窗发布了新的文献求助10
6秒前
侯孤容完成签到,获得积分10
6秒前
7秒前
7秒前
英姑应助dong采纳,获得10
7秒前
闪闪的柚子关注了科研通微信公众号
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
刘明升完成签到,获得积分10
8秒前
8秒前
HH完成签到,获得积分10
9秒前
tianmafei发布了新的文献求助10
9秒前
隐形曼青应助忐忑的尔容采纳,获得10
9秒前
XYF完成签到,获得积分10
9秒前
shinnosuke应助木易北北采纳,获得10
10秒前
侯孤容发布了新的文献求助10
10秒前
炙热霸发布了新的文献求助10
10秒前
ANan1213发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625702
求助须知:如何正确求助?哪些是违规求助? 4711480
关于积分的说明 14955860
捐赠科研通 4779568
什么是DOI,文献DOI怎么找? 2553797
邀请新用户注册赠送积分活动 1515710
关于科研通互助平台的介绍 1475906