已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MRI Super-Resolution With Partial Diffusion Models

图像分辨率 分辨率(逻辑) 磁共振弥散成像 扩散 磁共振成像 计算机科学 计算机视觉 核磁共振 人工智能 放射科 物理 医学 热力学
作者
Kai Zhao,Kaifeng Pang,Alex Ling Yu Hung,Haoxin Zheng,Ran Yan,Kyunghyun Sung
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:44 (3): 1194-1205 被引量:12
标识
DOI:10.1109/tmi.2024.3483109
摘要

Diffusion models have achieved impressive performance on various image generation tasks, including image super-resolution. Despite their impressive performance, diffusion models suffer from high computational costs due to the large number of denoising steps. In this paper, we proposed a novel accelerated diffusion model, termed Partial Diffusion Models (PDMs), for magnetic resonance imaging (MRI) super-resolution. We observed that the latents of diffusing a pair of low- and high-resolution images gradually converge and become indistinguishable after a certain noise level. This inspires us to use certain low-resolution latent to approximate corresponding high-resolution latent. With the approximation, we can skip part of the diffusion and denoising steps, reducing the computation in training and inference. To mitigate the approximation error, we further introduced 'latent alignment' that gradually interpolates and approaches the high-resolution latents from the low-resolution latents. Partial diffusion models, in conjunction with latent alignment, essentially establish a new trajectory where the latents, unlike those in original diffusion models, gradually transition from low-resolution to high-resolution images. Experiments on three MRI datasets demonstrate that partial diffusion models achieve competetive super-resolution quality with significantly fewer denoising steps than original diffusion models. In addition, they can be incorporated with recent accelerated diffusion models to further enhance the efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lynn发布了新的文献求助10
1秒前
2秒前
怕孤独的若云应助bajie01采纳,获得10
2秒前
3秒前
3秒前
小螃蟹发布了新的文献求助10
5秒前
7秒前
我是老大应助南风不竞采纳,获得10
7秒前
ray发布了新的文献求助10
8秒前
10秒前
希希完成签到 ,获得积分10
11秒前
JamesPei应助梦比优斯采纳,获得10
14秒前
烂漫凡双发布了新的文献求助10
16秒前
17秒前
17秒前
19秒前
舒适的金针菇应助liii采纳,获得10
21秒前
南风不竞发布了新的文献求助10
21秒前
伶俐惜萱发布了新的文献求助10
23秒前
25秒前
26秒前
Akim应助直率的秋柔采纳,获得10
27秒前
28秒前
jsdiohfsiodhg完成签到,获得积分10
29秒前
29秒前
善良的花菜完成签到 ,获得积分10
30秒前
光坠星海完成签到 ,获得积分10
31秒前
Ava应助liaoyoujiao采纳,获得10
31秒前
32秒前
33秒前
XiYang完成签到,获得积分10
34秒前
蕊蕊蕊完成签到 ,获得积分10
36秒前
隐形不凡发布了新的文献求助10
39秒前
39秒前
40秒前
华仔应助江南刀王采纳,获得10
40秒前
伶俐惜萱完成签到,获得积分10
40秒前
悄悄拔尖儿完成签到 ,获得积分10
41秒前
能干靖儿发布了新的文献求助10
42秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462934
求助须知:如何正确求助?哪些是违规求助? 4567742
关于积分的说明 14311298
捐赠科研通 4493523
什么是DOI,文献DOI怎么找? 2461712
邀请新用户注册赠送积分活动 1450823
关于科研通互助平台的介绍 1425938