MScan: An Automated In-Situ Fault Detection System for Desktop Fused Filament Fabrication 3D Printers Utilizing a Non-Contact Sensor

激光扫描 扫描仪 快速成型 过程(计算) 3D打印 计算机科学 熔丝制造 点云 墨水池 人工智能 激光器 工程类 机械工程 光学 物理 语音识别 操作系统
作者
H.-C. Lyu,Pinyi Wu,Chinedum E. Okwudire
标识
DOI:10.1115/msec2024-124650
摘要

Abstract Fused filament fabrication (FFF) has gained widespread recognition across diverse industries owing to its rapid prototyping and cost-effectiveness advantages. As a result, it is the most prevalent modality for desktop 3D printing. However, FFF can be susceptible to a variety of printing defects and jeopardize the printing quality. Monitoring when defects occur during 3D printing and promptly stopping faulty printing remains a significant challenge. To address this challenge, engineers have developed techniques for detecting and characterizing defects during the FFF printing process. They can be categorized into contact and non-contact detection methodologies. Non-contact methods usually rely on computer vision or laser scanning. However, computer vision needs the assistance of machine learning and demands a substantial amount of training data for accurate detection. Moreover, computer vision is susceptible to ambient light conditions. The laser scanning method detects the printing defects by comparing the point cloud obtained from scanning the printed object with the CAD model. However, this approach heavily depends on the precision of the laser scanner, and achieving high accuracy often entails a significant financial investment for a good laser scanner. To improve accuracy and cost-effectiveness, a low-cost contact-based detection system called MTouch was developed in prior work. However, using contact sensors carries a risk of damaging fragile prints and leading to printing failures. In response, this paper introduces a non-contact, cost-effective, and robust detection method, MScan, to detect defects during the printing process. In the MScan setup, a laser-camera sensor is designed with a laser stripe emitter and a camera module based on laser triangulation to assess the absence of the printed object during the printing process. Additionally, MScan employs an effective and straightforward image processing and data acquisition algorithm to ensure its robustness and computational efficiency. The effectiveness of MScan is demonstrated experimentally by deploying it on an Ender 3 desktop FFF 3D printer. A fault detection accuracy of over 95% is achieved. Furthermore, MScan’s robustness to lighting variations is experimentally demonstrated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欢呼黑猫应助liuyafei采纳,获得10
1秒前
烟花应助111采纳,获得10
2秒前
3秒前
土木研学僧完成签到,获得积分10
3秒前
3秒前
xiaoT发布了新的文献求助10
3秒前
专注的曼寒完成签到 ,获得积分10
4秒前
4秒前
sunmiao完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
微毒麻醉完成签到,获得积分10
6秒前
ljy1111发布了新的文献求助10
6秒前
Cyuan发布了新的文献求助10
6秒前
方方发布了新的文献求助10
6秒前
6秒前
曹定发布了新的文献求助10
7秒前
AliceCute发布了新的文献求助10
7秒前
hh完成签到,获得积分10
7秒前
8秒前
8秒前
小樊同学发布了新的文献求助10
9秒前
黄晃晃完成签到,获得积分20
9秒前
cogntivedisorder完成签到 ,获得积分10
9秒前
10秒前
火星上易真完成签到 ,获得积分10
10秒前
感性的荆完成签到,获得积分10
10秒前
星河鹭起发布了新的文献求助10
11秒前
11秒前
科研通AI6.1应助超文献采纳,获得10
11秒前
11秒前
11秒前
winter完成签到,获得积分10
12秒前
橘子发布了新的文献求助10
12秒前
三石呦423发布了新的文献求助10
12秒前
qq大魔王发布了新的文献求助10
13秒前
大个应助小樊同学采纳,获得10
13秒前
14秒前
dyvdyvaass发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
xiaoT完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082