MScan: An Automated In-Situ Fault Detection System for Desktop Fused Filament Fabrication 3D Printers Utilizing a Non-Contact Sensor

激光扫描 扫描仪 快速成型 过程(计算) 3D打印 计算机科学 熔丝制造 点云 墨水池 人工智能 激光器 工程类 机械工程 光学 物理 操作系统 语音识别
作者
H.-C. Lyu,Pinyi Wu,Chinedum E. Okwudire
标识
DOI:10.1115/msec2024-124650
摘要

Abstract Fused filament fabrication (FFF) has gained widespread recognition across diverse industries owing to its rapid prototyping and cost-effectiveness advantages. As a result, it is the most prevalent modality for desktop 3D printing. However, FFF can be susceptible to a variety of printing defects and jeopardize the printing quality. Monitoring when defects occur during 3D printing and promptly stopping faulty printing remains a significant challenge. To address this challenge, engineers have developed techniques for detecting and characterizing defects during the FFF printing process. They can be categorized into contact and non-contact detection methodologies. Non-contact methods usually rely on computer vision or laser scanning. However, computer vision needs the assistance of machine learning and demands a substantial amount of training data for accurate detection. Moreover, computer vision is susceptible to ambient light conditions. The laser scanning method detects the printing defects by comparing the point cloud obtained from scanning the printed object with the CAD model. However, this approach heavily depends on the precision of the laser scanner, and achieving high accuracy often entails a significant financial investment for a good laser scanner. To improve accuracy and cost-effectiveness, a low-cost contact-based detection system called MTouch was developed in prior work. However, using contact sensors carries a risk of damaging fragile prints and leading to printing failures. In response, this paper introduces a non-contact, cost-effective, and robust detection method, MScan, to detect defects during the printing process. In the MScan setup, a laser-camera sensor is designed with a laser stripe emitter and a camera module based on laser triangulation to assess the absence of the printed object during the printing process. Additionally, MScan employs an effective and straightforward image processing and data acquisition algorithm to ensure its robustness and computational efficiency. The effectiveness of MScan is demonstrated experimentally by deploying it on an Ender 3 desktop FFF 3D printer. A fault detection accuracy of over 95% is achieved. Furthermore, MScan’s robustness to lighting variations is experimentally demonstrated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
79发布了新的文献求助10
2秒前
无花果应助jimi采纳,获得10
2秒前
luki完成签到,获得积分10
3秒前
Aixia完成签到 ,获得积分10
3秒前
狼主发布了新的文献求助10
3秒前
66完成签到,获得积分10
4秒前
完美的友蕊应助喜悦的斓采纳,获得10
4秒前
美好的白风完成签到 ,获得积分10
5秒前
7秒前
7秒前
suzy-123完成签到,获得积分10
7秒前
满意白开水完成签到,获得积分10
9秒前
小巧半芹发布了新的文献求助10
10秒前
狼主完成签到,获得积分10
11秒前
11秒前
幽默海燕完成签到 ,获得积分10
11秒前
14秒前
许锦程完成签到,获得积分10
15秒前
15秒前
18秒前
JY完成签到,获得积分10
20秒前
大模型应助丰富绿蝶采纳,获得10
20秒前
鸭鸭串完成签到,获得积分10
20秒前
21秒前
Vv发布了新的文献求助10
23秒前
23秒前
852应助能接受微辣采纳,获得10
23秒前
qyhl完成签到 ,获得积分10
24秒前
小宝完成签到,获得积分10
24秒前
淡淡夕阳发布了新的文献求助10
24秒前
Jay完成签到,获得积分10
25秒前
25秒前
文献通完成签到 ,获得积分10
26秒前
牛小浓发布了新的文献求助10
29秒前
张张想去301完成签到 ,获得积分10
29秒前
沉123发布了新的文献求助10
30秒前
111发布了新的文献求助10
31秒前
巴巴变发布了新的文献求助30
32秒前
sora98完成签到 ,获得积分10
32秒前
马香芦完成签到,获得积分10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966069
求助须知:如何正确求助?哪些是违规求助? 3511435
关于积分的说明 11158171
捐赠科研通 3246056
什么是DOI,文献DOI怎么找? 1793288
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804311