亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Development and validation of a machine learning-based predictive model for compassion fatigue in nursing interns: A cross-sectional study with latent profile analysis

同情 横断面研究 交叉验证 心理学 潜在类模型 护理部 人工智能 计算机科学 机器学习 医学 政治学 病理 法学
作者
Lijuan Yi,Ting Shuai,Yi Liu,Jingjing Zhou,María Herrera,Xu Tian
标识
DOI:10.21203/rs.3.rs-4709842/v1
摘要

Abstract Background Exposure to compassion fatigue during internships can significantly impact on nursing students’ future career trajectories and their intention to stay in the nursing profession. Accurately identifying nursing students at high risk of compassion fatigue is vital for timely interventions. However, existing assessment tools often fail to account for within-group variability and lack predictive capabilities. To develop and validate a predictive model for detecting the risk of compassion fatigue among nursing students during their placement. Design: A cross-sectional study design. Methods Data from 2256 nursing students in China between December 2021 and June 2022 were collected on compassion fatigue, professional identity, self-efficacy, social support, psychological resilience, coping styles, and demographic characteristics. The latent profile analysis was performed to classify compassion fatigue levels of nursing students. Univariate analysis, least absolute shrinkage and selection operator regression analysis were conducted to identify potential predictors of compassion fatigue. Eight machine learning algorithms were selected to predict compassion fatigue, and the performance of these machine learning models were evaluated using calibration and discrimination metrics. Additionally, the best-performing model from this evaluation was selected for further independent assessment. Results A three-profile model best fit the data, identifying low (55.73%), moderate (32.17%), and severe (12.10%) profiles for compassion fatigue. The area under the curve values for the eight machine learning models ranged from 0.644 to 0.826 for the training set and from 0.651 to 0.757 for the test set. The eXtreme Gradient Boosting performed best, with area under the receiver operating characteristic curve values of 0.840, 0.768, and 0.731 in the training, validation, and test sets, respectively. SHAP analysis clarified the model’s explanatory variables, with psychological resilience, professional identity, and social support being the most significant contributors to the risk of compassion fatigue. A user-friendly, web-based prediction tool for calculating the risk of compassion fatigue was developed. Conclusions The eXtreme Gradient Boosting classifier demonstrates exceptional performance, and clinical implementation of the online tool can provide nursing managers with an effective means to manage compassion fatigue.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叶也完成签到 ,获得积分10
12秒前
14秒前
34秒前
40秒前
49秒前
1分钟前
1分钟前
传奇3应助芒果瑞纳冰采纳,获得10
1分钟前
1分钟前
Chouvikin完成签到,获得积分10
1分钟前
1分钟前
桐夜完成签到 ,获得积分10
1分钟前
1分钟前
lqhccww发布了新的文献求助10
1分钟前
1分钟前
1分钟前
zilt1109发布了新的文献求助10
1分钟前
Orange应助龙06采纳,获得30
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
chenyue233完成签到,获得积分10
2分钟前
怪僻完成签到 ,获得积分10
2分钟前
郗妫完成签到 ,获得积分10
2分钟前
3分钟前
丘比特应助溜溜采纳,获得10
3分钟前
3分钟前
3分钟前
yxl要顺利毕业_发6篇C完成签到,获得积分10
3分钟前
4分钟前
天天快乐应助浮生六记采纳,获得10
4分钟前
4分钟前
4分钟前
溜溜发布了新的文献求助10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
4分钟前
白华苍松发布了新的文献求助20
4分钟前
英姑应助白华苍松采纳,获得10
4分钟前
4分钟前
hhj完成签到,获得积分20
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509664
求助须知:如何正确求助?哪些是违规求助? 4604470
关于积分的说明 14489810
捐赠科研通 4539307
什么是DOI,文献DOI怎么找? 2487442
邀请新用户注册赠送积分活动 1469860
关于科研通互助平台的介绍 1442070