Development and validation of a machine learning-based predictive model for compassion fatigue in nursing interns: A cross-sectional study with latent profile analysis

同情 横断面研究 交叉验证 心理学 潜在类模型 护理部 人工智能 计算机科学 机器学习 医学 政治学 病理 法学
作者
Lijuan Yi,Ting Shuai,Yi Liu,Jingjing Zhou,María Herrera,Xu Tian
标识
DOI:10.21203/rs.3.rs-4709842/v1
摘要

Abstract Background Exposure to compassion fatigue during internships can significantly impact on nursing students’ future career trajectories and their intention to stay in the nursing profession. Accurately identifying nursing students at high risk of compassion fatigue is vital for timely interventions. However, existing assessment tools often fail to account for within-group variability and lack predictive capabilities. To develop and validate a predictive model for detecting the risk of compassion fatigue among nursing students during their placement. Design: A cross-sectional study design. Methods Data from 2256 nursing students in China between December 2021 and June 2022 were collected on compassion fatigue, professional identity, self-efficacy, social support, psychological resilience, coping styles, and demographic characteristics. The latent profile analysis was performed to classify compassion fatigue levels of nursing students. Univariate analysis, least absolute shrinkage and selection operator regression analysis were conducted to identify potential predictors of compassion fatigue. Eight machine learning algorithms were selected to predict compassion fatigue, and the performance of these machine learning models were evaluated using calibration and discrimination metrics. Additionally, the best-performing model from this evaluation was selected for further independent assessment. Results A three-profile model best fit the data, identifying low (55.73%), moderate (32.17%), and severe (12.10%) profiles for compassion fatigue. The area under the curve values for the eight machine learning models ranged from 0.644 to 0.826 for the training set and from 0.651 to 0.757 for the test set. The eXtreme Gradient Boosting performed best, with area under the receiver operating characteristic curve values of 0.840, 0.768, and 0.731 in the training, validation, and test sets, respectively. SHAP analysis clarified the model’s explanatory variables, with psychological resilience, professional identity, and social support being the most significant contributors to the risk of compassion fatigue. A user-friendly, web-based prediction tool for calculating the risk of compassion fatigue was developed. Conclusions The eXtreme Gradient Boosting classifier demonstrates exceptional performance, and clinical implementation of the online tool can provide nursing managers with an effective means to manage compassion fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
doubleshake发布了新的文献求助10
1秒前
石斑鱼完成签到,获得积分10
9秒前
归诚完成签到,获得积分10
10秒前
17852573662完成签到,获得积分10
14秒前
夹心小狗完成签到,获得积分10
15秒前
伍秋望完成签到,获得积分10
17秒前
loey完成签到,获得积分10
18秒前
淡然觅海完成签到 ,获得积分10
18秒前
苏苏完成签到 ,获得积分10
26秒前
chen完成签到 ,获得积分10
32秒前
彦子完成签到 ,获得积分10
33秒前
波波完成签到 ,获得积分10
36秒前
积极的中蓝完成签到 ,获得积分10
39秒前
平常的仙人掌完成签到,获得积分10
39秒前
奕泽完成签到 ,获得积分10
45秒前
Yang完成签到,获得积分10
49秒前
爆米花应助科研通管家采纳,获得10
49秒前
49秒前
凌晨五点的完成签到,获得积分10
55秒前
yirenli完成签到,获得积分10
58秒前
yoyocici1505完成签到,获得积分10
59秒前
跋扈完成签到,获得积分10
59秒前
斯蒂芬库外完成签到,获得积分10
1分钟前
不配.完成签到,获得积分0
1分钟前
无限的千凝完成签到 ,获得积分10
1分钟前
liyiren完成签到,获得积分10
1分钟前
陌子完成签到 ,获得积分10
1分钟前
我的白起是国服完成签到 ,获得积分10
1分钟前
YORLAN完成签到 ,获得积分10
1分钟前
长命百岁完成签到 ,获得积分10
1分钟前
丰富的绮山完成签到,获得积分10
1分钟前
00完成签到 ,获得积分10
1分钟前
邓娅琴完成签到 ,获得积分10
1分钟前
路哈哈完成签到 ,获得积分10
1分钟前
开心的短靴完成签到 ,获得积分10
1分钟前
雍元正完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137058
求助须知:如何正确求助?哪些是违规求助? 2788032
关于积分的说明 7784326
捐赠科研通 2444102
什么是DOI,文献DOI怎么找? 1299733
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010