已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a machine learning-based predictive model for compassion fatigue in nursing interns: A cross-sectional study with latent profile analysis

同情 横断面研究 交叉验证 心理学 潜在类模型 护理部 人工智能 计算机科学 机器学习 医学 政治学 病理 法学
作者
Lijuan Yi,Ting Shuai,Yi Liu,Jingjing Zhou,María Herrera,Xu Tian
标识
DOI:10.21203/rs.3.rs-4709842/v1
摘要

Abstract Background Exposure to compassion fatigue during internships can significantly impact on nursing students’ future career trajectories and their intention to stay in the nursing profession. Accurately identifying nursing students at high risk of compassion fatigue is vital for timely interventions. However, existing assessment tools often fail to account for within-group variability and lack predictive capabilities. To develop and validate a predictive model for detecting the risk of compassion fatigue among nursing students during their placement. Design: A cross-sectional study design. Methods Data from 2256 nursing students in China between December 2021 and June 2022 were collected on compassion fatigue, professional identity, self-efficacy, social support, psychological resilience, coping styles, and demographic characteristics. The latent profile analysis was performed to classify compassion fatigue levels of nursing students. Univariate analysis, least absolute shrinkage and selection operator regression analysis were conducted to identify potential predictors of compassion fatigue. Eight machine learning algorithms were selected to predict compassion fatigue, and the performance of these machine learning models were evaluated using calibration and discrimination metrics. Additionally, the best-performing model from this evaluation was selected for further independent assessment. Results A three-profile model best fit the data, identifying low (55.73%), moderate (32.17%), and severe (12.10%) profiles for compassion fatigue. The area under the curve values for the eight machine learning models ranged from 0.644 to 0.826 for the training set and from 0.651 to 0.757 for the test set. The eXtreme Gradient Boosting performed best, with area under the receiver operating characteristic curve values of 0.840, 0.768, and 0.731 in the training, validation, and test sets, respectively. SHAP analysis clarified the model’s explanatory variables, with psychological resilience, professional identity, and social support being the most significant contributors to the risk of compassion fatigue. A user-friendly, web-based prediction tool for calculating the risk of compassion fatigue was developed. Conclusions The eXtreme Gradient Boosting classifier demonstrates exceptional performance, and clinical implementation of the online tool can provide nursing managers with an effective means to manage compassion fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
逃跑的想表白的你猜完成签到,获得积分10
1秒前
2秒前
kid1412完成签到 ,获得积分10
2秒前
4秒前
酷波er应助yy采纳,获得20
4秒前
5秒前
wbh发布了新的文献求助10
6秒前
6秒前
饺子发布了新的文献求助10
8秒前
科研通AI2S应助负责怀莲采纳,获得10
8秒前
jie发布了新的文献求助10
10秒前
我是老大应助wbh采纳,获得10
14秒前
jie完成签到,获得积分20
16秒前
胖大海完成签到 ,获得积分10
17秒前
17秒前
夜雨声烦发布了新的文献求助10
17秒前
19秒前
20秒前
诺诺发布了新的文献求助10
21秒前
Wendygogogo发布了新的文献求助10
23秒前
丘比特应助陶醉的天菱采纳,获得50
23秒前
无风发布了新的文献求助10
24秒前
25秒前
Wendygogogo完成签到,获得积分20
28秒前
33秒前
赘婿应助hhhi采纳,获得10
34秒前
35秒前
百里如雪发布了新的文献求助80
35秒前
38秒前
徐志豪发布了新的文献求助10
39秒前
40秒前
sqhnsd发布了新的文献求助10
41秒前
43秒前
46秒前
yx_cheng应助夜雨声烦采纳,获得10
47秒前
负责怀莲发布了新的文献求助10
47秒前
轻松的惜芹举报苗条妙旋求助涉嫌违规
48秒前
战神林北完成签到,获得积分10
50秒前
Rondab应助不安机器猫采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994362
求助须知:如何正确求助?哪些是违规求助? 3534806
关于积分的说明 11266549
捐赠科研通 3274665
什么是DOI,文献DOI怎么找? 1806427
邀请新用户注册赠送积分活动 883291
科研通“疑难数据库(出版商)”最低求助积分说明 809749