Development and validation of a machine learning-based predictive model for compassion fatigue in nursing interns: A cross-sectional study with latent profile analysis

同情 横断面研究 交叉验证 心理学 潜在类模型 护理部 人工智能 计算机科学 机器学习 医学 政治学 病理 法学
作者
Lijuan Yi,Ting Shuai,Yi Liu,Jingjing Zhou,María Herrera,Xu Tian
标识
DOI:10.21203/rs.3.rs-4709842/v1
摘要

Abstract Background Exposure to compassion fatigue during internships can significantly impact on nursing students’ future career trajectories and their intention to stay in the nursing profession. Accurately identifying nursing students at high risk of compassion fatigue is vital for timely interventions. However, existing assessment tools often fail to account for within-group variability and lack predictive capabilities. To develop and validate a predictive model for detecting the risk of compassion fatigue among nursing students during their placement. Design: A cross-sectional study design. Methods Data from 2256 nursing students in China between December 2021 and June 2022 were collected on compassion fatigue, professional identity, self-efficacy, social support, psychological resilience, coping styles, and demographic characteristics. The latent profile analysis was performed to classify compassion fatigue levels of nursing students. Univariate analysis, least absolute shrinkage and selection operator regression analysis were conducted to identify potential predictors of compassion fatigue. Eight machine learning algorithms were selected to predict compassion fatigue, and the performance of these machine learning models were evaluated using calibration and discrimination metrics. Additionally, the best-performing model from this evaluation was selected for further independent assessment. Results A three-profile model best fit the data, identifying low (55.73%), moderate (32.17%), and severe (12.10%) profiles for compassion fatigue. The area under the curve values for the eight machine learning models ranged from 0.644 to 0.826 for the training set and from 0.651 to 0.757 for the test set. The eXtreme Gradient Boosting performed best, with area under the receiver operating characteristic curve values of 0.840, 0.768, and 0.731 in the training, validation, and test sets, respectively. SHAP analysis clarified the model’s explanatory variables, with psychological resilience, professional identity, and social support being the most significant contributors to the risk of compassion fatigue. A user-friendly, web-based prediction tool for calculating the risk of compassion fatigue was developed. Conclusions The eXtreme Gradient Boosting classifier demonstrates exceptional performance, and clinical implementation of the online tool can provide nursing managers with an effective means to manage compassion fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
典雅夏之完成签到,获得积分10
1秒前
lemon完成签到,获得积分10
2秒前
开心完成签到,获得积分10
3秒前
Weirdo完成签到,获得积分10
3秒前
海德堡完成签到,获得积分10
5秒前
科研通AI2S应助典雅夏之采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
YXIAN完成签到,获得积分10
7秒前
harmy完成签到,获得积分10
7秒前
闪闪青雪应助淡定小蜜蜂采纳,获得30
7秒前
JamesPei应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
闫132发布了新的文献求助10
8秒前
NB完成签到,获得积分10
9秒前
田二亩完成签到,获得积分10
10秒前
凄凉山谷的风完成签到,获得积分10
10秒前
佳言2009完成签到,获得积分10
10秒前
10秒前
Emily完成签到,获得积分10
11秒前
11秒前
海德堡发布了新的文献求助10
11秒前
知性的水杯完成签到 ,获得积分10
11秒前
nick完成签到,获得积分10
12秒前
赤墨完成签到,获得积分10
12秒前
gy发布了新的文献求助10
12秒前
加减乘除完成签到,获得积分10
12秒前
独特的娩发布了新的文献求助10
13秒前
cookie完成签到,获得积分10
14秒前
wanci应助杭紫雪采纳,获得10
14秒前
scl发布了新的文献求助10
16秒前
庚朝年完成签到 ,获得积分10
17秒前
lxgz完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助30
17秒前
xiuxiu完成签到 ,获得积分10
17秒前
Honey完成签到,获得积分10
20秒前
桑尼号完成签到,获得积分10
21秒前
jin完成签到,获得积分10
23秒前
感谢有你完成签到 ,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661181
求助须知:如何正确求助?哪些是违规求助? 3222298
关于积分的说明 9744486
捐赠科研通 2931912
什么是DOI,文献DOI怎么找? 1605300
邀请新用户注册赠送积分活动 757805
科研通“疑难数据库(出版商)”最低求助积分说明 734569