Development and validation of a machine learning-based predictive model for compassion fatigue in nursing interns: A cross-sectional study with latent profile analysis

同情 横断面研究 交叉验证 心理学 潜在类模型 护理部 人工智能 计算机科学 机器学习 医学 政治学 病理 法学
作者
Lijuan Yi,Ting Shuai,Yi Liu,Jingjing Zhou,María Herrera,Xu Tian
标识
DOI:10.21203/rs.3.rs-4709842/v1
摘要

Abstract Background Exposure to compassion fatigue during internships can significantly impact on nursing students’ future career trajectories and their intention to stay in the nursing profession. Accurately identifying nursing students at high risk of compassion fatigue is vital for timely interventions. However, existing assessment tools often fail to account for within-group variability and lack predictive capabilities. To develop and validate a predictive model for detecting the risk of compassion fatigue among nursing students during their placement. Design: A cross-sectional study design. Methods Data from 2256 nursing students in China between December 2021 and June 2022 were collected on compassion fatigue, professional identity, self-efficacy, social support, psychological resilience, coping styles, and demographic characteristics. The latent profile analysis was performed to classify compassion fatigue levels of nursing students. Univariate analysis, least absolute shrinkage and selection operator regression analysis were conducted to identify potential predictors of compassion fatigue. Eight machine learning algorithms were selected to predict compassion fatigue, and the performance of these machine learning models were evaluated using calibration and discrimination metrics. Additionally, the best-performing model from this evaluation was selected for further independent assessment. Results A three-profile model best fit the data, identifying low (55.73%), moderate (32.17%), and severe (12.10%) profiles for compassion fatigue. The area under the curve values for the eight machine learning models ranged from 0.644 to 0.826 for the training set and from 0.651 to 0.757 for the test set. The eXtreme Gradient Boosting performed best, with area under the receiver operating characteristic curve values of 0.840, 0.768, and 0.731 in the training, validation, and test sets, respectively. SHAP analysis clarified the model’s explanatory variables, with psychological resilience, professional identity, and social support being the most significant contributors to the risk of compassion fatigue. A user-friendly, web-based prediction tool for calculating the risk of compassion fatigue was developed. Conclusions The eXtreme Gradient Boosting classifier demonstrates exceptional performance, and clinical implementation of the online tool can provide nursing managers with an effective means to manage compassion fatigue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iNk应助可可采纳,获得10
刚刚
无花果应助巴巴爸爸采纳,获得10
刚刚
1秒前
调研昵称发布了新的文献求助10
1秒前
明明鸣发布了新的文献求助10
1秒前
刘佳灏完成签到,获得积分10
1秒前
1秒前
ccccc关注了科研通微信公众号
3秒前
ExtroGod发布了新的文献求助10
4秒前
4秒前
在水一方应助dan1029采纳,获得10
5秒前
深情安青应助dan1029采纳,获得10
5秒前
可爱的函函应助dan1029采纳,获得10
5秒前
小编一枚完成签到 ,获得积分10
5秒前
LLLLLL完成签到,获得积分10
5秒前
无花果应助dan1029采纳,获得10
6秒前
传奇3应助dan1029采纳,获得10
6秒前
小二郎应助dan1029采纳,获得10
6秒前
悦耳的小夏完成签到,获得积分20
6秒前
英俊的铭应助刘老师采纳,获得10
7秒前
脑洞疼应助巧克力采纳,获得10
7秒前
彭于晏应助dan1029采纳,获得10
7秒前
7秒前
朴实嵩完成签到,获得积分10
7秒前
慕青应助dan1029采纳,获得10
7秒前
坚定文龙发布了新的文献求助10
7秒前
风趣的含海完成签到,获得积分10
7秒前
8秒前
慕青应助麦田稻草人采纳,获得30
9秒前
漫天繁星发布了新的文献求助10
9秒前
lkl应助姜姜采纳,获得20
10秒前
wangwang发布了新的文献求助10
10秒前
西北孤傲的狼完成签到,获得积分10
10秒前
ljnbb1发布了新的文献求助10
10秒前
12秒前
13秒前
13秒前
qii发布了新的文献求助10
14秒前
星辰大海应助Ayn采纳,获得10
14秒前
在水一方应助NICAI采纳,获得10
14秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3082258
求助须知:如何正确求助?哪些是违规求助? 2735476
关于积分的说明 7537620
捐赠科研通 2385156
什么是DOI,文献DOI怎么找? 1264678
科研通“疑难数据库(出版商)”最低求助积分说明 612700
版权声明 597623