Enhancing the Recognition of Handwritten Arabic Characters through Hybrid Convolutional and Bidirectional Recurrent Neural Network Models

卷积神经网络 计算机科学 阿拉伯语 语音识别 人工智能 新认知 人工神经网络 模式识别(心理学) 循环神经网络 自然语言处理 时滞神经网络 语言学 哲学
作者
Mohamed G. Mahdi,Ahmed Sleem,Ibrahim Elhenawy,Soha Safwat
标识
DOI:10.61356/smij.2024.9382
摘要

Handwritten Arabic character recognition remains a challenging task in pattern recognition due to the inherent complexities of the cursive script and visual similarities between characters. While deep learning techniques have demonstrated promising results in this domain, further enhancements to the model architecture can drive even greater performance improvements. This study introduces a hybrid deep learning approach that combines Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks, specifically Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Units (Bi-GRU). By leveraging the strengths of both convolutional and recurrent neural network components, the proposed models are able to effectively capture spatial features as well as model the temporal dynamics and contextual relationships present in handwritten Arabic text. Experiments conducted on the AHCD and Hijjaa benchmark datasets show that the CNN-Bi-GRU framework achieved state-of-the-art accuracy rates of 97.05% and 91.78% respectively, outperforming previous deep learning-based methods. These results demonstrate the significant performance gains that can be achieved by integrating specialized temporal modeling and contextual representation capabilities into the handwriting recognition pipeline, without the need for explicit segmentation. The findings of this research represent a crucial advancement in the continued development of sophisticated and precise deep learning systems for Arabic handwriting recognition, with broad applications across domains that rely on efficient text extraction from handwritten documents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助峰宝宝采纳,获得10
1秒前
2秒前
MFNM完成签到,获得积分10
2秒前
六月完成签到 ,获得积分20
2秒前
迷路的清涟完成签到,获得积分10
3秒前
认真初之发布了新的文献求助10
4秒前
梅良心完成签到 ,获得积分10
4秒前
Ava应助朴素念之采纳,获得10
4秒前
lxl123发布了新的文献求助10
4秒前
充电宝应助神勇的天问采纳,获得10
5秒前
Green发布了新的文献求助10
6秒前
wang发布了新的文献求助10
6秒前
malubest发布了新的文献求助10
7秒前
7秒前
Banff完成签到,获得积分10
7秒前
8秒前
9秒前
单于思雁完成签到,获得积分10
9秒前
一一完成签到 ,获得积分10
9秒前
三只眼小怪兽完成签到,获得积分10
10秒前
南风知我意完成签到,获得积分10
11秒前
峰宝宝发布了新的文献求助10
11秒前
bkagyin应助Green采纳,获得10
13秒前
大蒜味酸奶钊完成签到 ,获得积分10
13秒前
开心子骞发布了新的文献求助10
14秒前
norman发布了新的文献求助10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
15秒前
思源应助褚井采纳,获得20
16秒前
Jasper应助浮生采纳,获得10
16秒前
17秒前
malubest完成签到,获得积分10
18秒前
seven发布了新的文献求助50
18秒前
飘逸梦容发布了新的文献求助10
19秒前
丰盛的煎饼完成签到,获得积分0
20秒前
lxl123完成签到 ,获得积分10
23秒前
无限猕猴桃完成签到,获得积分10
23秒前
研途者完成签到,获得积分10
24秒前
26秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262769
求助须知:如何正确求助?哪些是违规求助? 2903373
关于积分的说明 8325014
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398263
科研通“疑难数据库(出版商)”最低求助积分说明 654051
邀请新用户注册赠送积分活动 632668