Enhancing the Recognition of Handwritten Arabic Characters through Hybrid Convolutional and Bidirectional Recurrent Neural Network Models

卷积神经网络 计算机科学 阿拉伯语 语音识别 人工智能 新认知 人工神经网络 模式识别(心理学) 循环神经网络 自然语言处理 时滞神经网络 语言学 哲学
作者
Mohamed G. Mahdi,Ahmed Sleem,Ibrahim Elhenawy,Soha Safwat
标识
DOI:10.61356/smij.2024.9382
摘要

Handwritten Arabic character recognition remains a challenging task in pattern recognition due to the inherent complexities of the cursive script and visual similarities between characters. While deep learning techniques have demonstrated promising results in this domain, further enhancements to the model architecture can drive even greater performance improvements. This study introduces a hybrid deep learning approach that combines Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks, specifically Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Units (Bi-GRU). By leveraging the strengths of both convolutional and recurrent neural network components, the proposed models are able to effectively capture spatial features as well as model the temporal dynamics and contextual relationships present in handwritten Arabic text. Experiments conducted on the AHCD and Hijjaa benchmark datasets show that the CNN-Bi-GRU framework achieved state-of-the-art accuracy rates of 97.05% and 91.78% respectively, outperforming previous deep learning-based methods. These results demonstrate the significant performance gains that can be achieved by integrating specialized temporal modeling and contextual representation capabilities into the handwriting recognition pipeline, without the need for explicit segmentation. The findings of this research represent a crucial advancement in the continued development of sophisticated and precise deep learning systems for Arabic handwriting recognition, with broad applications across domains that rely on efficient text extraction from handwritten documents.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dong应助林林采纳,获得10
1秒前
1秒前
1秒前
qi_77发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
3秒前
科目三应助罗咩咩采纳,获得150
3秒前
以筱发布了新的文献求助100
3秒前
3秒前
YGJ发布了新的文献求助10
3秒前
4秒前
4秒前
李创业发布了新的文献求助10
4秒前
张达发布了新的文献求助10
4秒前
天高任鸟飞完成签到,获得积分10
5秒前
领导范儿应助糖糖采纳,获得10
5秒前
易辰完成签到,获得积分10
5秒前
lxr发布了新的文献求助30
6秒前
fake发布了新的文献求助10
7秒前
咳咳咳发布了新的文献求助10
7秒前
8秒前
Nyctophonia发布了新的文献求助10
8秒前
8秒前
9秒前
平常柔完成签到,获得积分10
9秒前
Wellnemo发布了新的文献求助10
9秒前
luckily发布了新的文献求助10
10秒前
11秒前
12秒前
隐形曼青应助武雨寒采纳,获得10
12秒前
13秒前
13秒前
13秒前
科研狗仔队完成签到,获得积分10
13秒前
弥生妖刀应助Molly采纳,获得30
13秒前
韩涵发布了新的文献求助10
13秒前
安白完成签到,获得积分20
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975922
求助须知:如何正确求助?哪些是违规求助? 3520226
关于积分的说明 11201711
捐赠科研通 3256720
什么是DOI,文献DOI怎么找? 1798423
邀请新用户注册赠送积分活动 877576
科研通“疑难数据库(出版商)”最低求助积分说明 806452