Enhancing the Recognition of Handwritten Arabic Characters through Hybrid Convolutional and Bidirectional Recurrent Neural Network Models

卷积神经网络 计算机科学 阿拉伯语 语音识别 人工智能 新认知 人工神经网络 模式识别(心理学) 循环神经网络 自然语言处理 时滞神经网络 语言学 哲学
作者
Mohamed G. Mahdi,Ahmed Sleem,Ibrahim Elhenawy,Soha Safwat
标识
DOI:10.61356/smij.2024.9382
摘要

Handwritten Arabic character recognition remains a challenging task in pattern recognition due to the inherent complexities of the cursive script and visual similarities between characters. While deep learning techniques have demonstrated promising results in this domain, further enhancements to the model architecture can drive even greater performance improvements. This study introduces a hybrid deep learning approach that combines Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks, specifically Bidirectional Long Short-Term Memory (Bi-LSTM) and Bidirectional Gated Recurrent Units (Bi-GRU). By leveraging the strengths of both convolutional and recurrent neural network components, the proposed models are able to effectively capture spatial features as well as model the temporal dynamics and contextual relationships present in handwritten Arabic text. Experiments conducted on the AHCD and Hijjaa benchmark datasets show that the CNN-Bi-GRU framework achieved state-of-the-art accuracy rates of 97.05% and 91.78% respectively, outperforming previous deep learning-based methods. These results demonstrate the significant performance gains that can be achieved by integrating specialized temporal modeling and contextual representation capabilities into the handwriting recognition pipeline, without the need for explicit segmentation. The findings of this research represent a crucial advancement in the continued development of sophisticated and precise deep learning systems for Arabic handwriting recognition, with broad applications across domains that rely on efficient text extraction from handwritten documents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
un发布了新的文献求助10
刚刚
markerfxq发布了新的文献求助10
刚刚
1秒前
科研通AI6应助猪猪hero采纳,获得10
1秒前
脑洞疼应助流云采纳,获得10
1秒前
酷波er应助Han采纳,获得10
1秒前
可爱的函函应助maomao201026采纳,获得30
1秒前
sheep发布了新的文献求助10
1秒前
Julo完成签到,获得积分10
1秒前
乐乐应助焦爽采纳,获得10
2秒前
2秒前
寻悦发布了新的文献求助10
2秒前
3秒前
3秒前
19991027完成签到 ,获得积分10
3秒前
3秒前
云梦江海发布了新的文献求助10
3秒前
无情的宛儿完成签到,获得积分10
4秒前
yifanchen完成签到,获得积分10
4秒前
4秒前
伶俐书蝶完成签到 ,获得积分10
4秒前
4秒前
Solitude发布了新的文献求助10
4秒前
4秒前
5秒前
安安完成签到,获得积分10
5秒前
汉堡包应助zz采纳,获得10
5秒前
此晴可待发布了新的文献求助10
5秒前
然十六发布了新的文献求助10
6秒前
6秒前
6秒前
Ww完成签到,获得积分10
6秒前
QQLL发布了新的文献求助10
6秒前
vadz7x发布了新的文献求助10
6秒前
markerfxq完成签到,获得积分10
6秒前
7秒前
罂粟发布了新的文献求助10
8秒前
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624668
求助须知:如何正确求助?哪些是违规求助? 4710442
关于积分的说明 14950829
捐赠科研通 4778578
什么是DOI,文献DOI怎么找? 2553345
邀请新用户注册赠送积分活动 1515302
关于科研通互助平台的介绍 1475603