Analysis of Travel Mode Choice Behavior between High-Speed Rail and Air Transport Utilizing Large-Scale Ticketing Data

模式选择 多项式logistic回归 门票 旅游行为 离散选择 模式(计算机接口) 计量经济学 采购 竞赛(生物学) 市场份额 运输工程 罗伊特 计算机科学 统计 营销 业务 经济 数学 工程类 公共交通 操作系统 生物 计算机安全 生态学
作者
Weiwei Cao,Zibing Chen,Feng Shi,Jin Xu
出处
期刊:Transportation Research Record [SAGE]
被引量:1
标识
DOI:10.1177/03611981241270169
摘要

As essential infrastructure, high-speed rail (HSR) and air transport (AT) play crucial roles in socioeconomic development. With their continuous expansion in China, the overlap of HSR and AT networks has increased, providing travelers with more choices for intercity travel. Because fierce competition in the medium-to-long-distance segment affects the market share and transport capacity dispatching, the travel choice between HSR and AT has been of intense interest. This study utilized a unique fusion dataset collected from two separate organizations to conduct an empirical analysis of the travel mode choice behaviors of individuals when choosing between HSR and AT. A multinomial logit (MNL) model was adopted to examine the influences of key factors on passenger choice preferences. The results showed that the fitting effect of the MNL model was satisfactory, and the parameters were strongly interpretable. The McFadden Pseudo R 2 with a city-pair fixed effect in the MNL model increased by 17.3% compared with that without the city-pair fixed effect. All the related explanatory variables, including the trip distance by high-speed train, demography, ticket purchasing, and travel behavior characteristics, had significant positive effects on the passengers’ choice of AT, with trip distance having the largest effect. According to the parameter estimation, 1,160 km was the division for individual choice between HSR and AT. This study also compared the prediction accuracies of the MNL model and eight classical machine-learning models and found that random forest had the best performance. This study provides a new framework for analyzing travel choice modeling when choosing between HSR and AT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
没食子酸完成签到,获得积分10
3秒前
4秒前
无极微光应助Jia采纳,获得20
5秒前
胡杨树2006完成签到,获得积分10
6秒前
fujun0095发布了新的文献求助10
7秒前
7秒前
7秒前
wxy发布了新的文献求助10
8秒前
zhaoyue完成签到 ,获得积分10
10秒前
科研狗的春天完成签到 ,获得积分10
11秒前
筷子夹豆腐脑完成签到,获得积分10
12秒前
12秒前
Jenny发布了新的文献求助10
13秒前
Estrella发布了新的文献求助10
13秒前
dandna完成签到 ,获得积分10
13秒前
晴心完成签到,获得积分10
17秒前
苹果鱼完成签到,获得积分10
18秒前
DD完成签到,获得积分10
18秒前
张二田发布了新的文献求助10
19秒前
tracer526发布了新的文献求助10
19秒前
萨尔莫斯发布了新的文献求助10
20秒前
25秒前
王佳俊完成签到,获得积分10
26秒前
26秒前
27秒前
Owen应助辜卅采纳,获得10
29秒前
29秒前
ding应助wxy采纳,获得10
35秒前
科研通AI6应助fujun0095采纳,获得10
41秒前
42秒前
萨尔莫斯发布了新的文献求助10
51秒前
51秒前
Minnie完成签到,获得积分10
52秒前
Jenny完成签到,获得积分20
55秒前
57秒前
背后的若之完成签到 ,获得积分10
58秒前
59秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951