Analysis of Travel Mode Choice Behavior between High-Speed Rail and Air Transport Utilizing Large-Scale Ticketing Data

模式选择 多项式logistic回归 门票 旅游行为 离散选择 模式(计算机接口) 计量经济学 采购 竞赛(生物学) 市场份额 运输工程 罗伊特 计算机科学 统计 营销 业务 经济 数学 工程类 公共交通 操作系统 生物 计算机安全 生态学
作者
Weiwei Cao,Zibing Chen,Feng Shi,Jin Xu
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981241270169
摘要

As essential infrastructure, high-speed rail (HSR) and air transport (AT) play crucial roles in socioeconomic development. With their continuous expansion in China, the overlap of HSR and AT networks has increased, providing travelers with more choices for intercity travel. Because fierce competition in the medium-to-long-distance segment affects the market share and transport capacity dispatching, the travel choice between HSR and AT has been of intense interest. This study utilized a unique fusion dataset collected from two separate organizations to conduct an empirical analysis of the travel mode choice behaviors of individuals when choosing between HSR and AT. A multinomial logit (MNL) model was adopted to examine the influences of key factors on passenger choice preferences. The results showed that the fitting effect of the MNL model was satisfactory, and the parameters were strongly interpretable. The McFadden Pseudo R 2 with a city-pair fixed effect in the MNL model increased by 17.3% compared with that without the city-pair fixed effect. All the related explanatory variables, including the trip distance by high-speed train, demography, ticket purchasing, and travel behavior characteristics, had significant positive effects on the passengers’ choice of AT, with trip distance having the largest effect. According to the parameter estimation, 1,160 km was the division for individual choice between HSR and AT. This study also compared the prediction accuracies of the MNL model and eight classical machine-learning models and found that random forest had the best performance. This study provides a new framework for analyzing travel choice modeling when choosing between HSR and AT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
刚刚
时尚的细菌完成签到,获得积分10
1秒前
糕冷草莓完成签到,获得积分10
1秒前
靓丽访枫完成签到 ,获得积分10
2秒前
riccixuu完成签到 ,获得积分10
2秒前
所所应助野格三明治采纳,获得10
3秒前
晓薇完成签到,获得积分10
3秒前
小乌龟完成签到,获得积分10
3秒前
yangm完成签到,获得积分10
3秒前
3秒前
jiu完成签到,获得积分10
3秒前
科研通AI2S应助轩辕一笑采纳,获得10
3秒前
小橙完成签到,获得积分10
5秒前
TqcPisces发布了新的文献求助10
5秒前
5秒前
5秒前
chriselva应助发嗲的雨筠采纳,获得20
5秒前
5秒前
呵呵完成签到,获得积分10
6秒前
6秒前
萌萌哒发布了新的文献求助20
6秒前
Mrivy发布了新的文献求助20
7秒前
李小羊完成签到,获得积分10
7秒前
saluo完成签到 ,获得积分10
7秒前
斯文稚晴完成签到 ,获得积分10
8秒前
8秒前
tent01完成签到,获得积分10
9秒前
独特的莫言完成签到,获得积分10
9秒前
勤恳达完成签到,获得积分10
9秒前
10秒前
爆米花应助阿毛采纳,获得10
10秒前
咋还发布了新的文献求助10
10秒前
hao发布了新的文献求助10
10秒前
TqcPisces完成签到,获得积分10
10秒前
星黛Lu完成签到,获得积分10
10秒前
cheney完成签到,获得积分10
10秒前
随风完成签到,获得积分10
10秒前
bkagyin应助iufan采纳,获得10
11秒前
愉快彩虹完成签到,获得积分10
11秒前
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134291
求助须知:如何正确求助?哪些是违规求助? 2785137
关于积分的说明 7770495
捐赠科研通 2440760
什么是DOI,文献DOI怎么找? 1297506
科研通“疑难数据库(出版商)”最低求助积分说明 624987
版权声明 600792