Analysis of Travel Mode Choice Behavior between High-Speed Rail and Air Transport Utilizing Large-Scale Ticketing Data

模式选择 多项式logistic回归 门票 旅游行为 离散选择 模式(计算机接口) 计量经济学 采购 竞赛(生物学) 市场份额 运输工程 罗伊特 计算机科学 统计 营销 业务 经济 数学 工程类 公共交通 操作系统 生物 计算机安全 生态学
作者
Weiwei Cao,Zibing Chen,Feng Shi,Jin Xu
出处
期刊:Transportation Research Record [SAGE]
被引量:1
标识
DOI:10.1177/03611981241270169
摘要

As essential infrastructure, high-speed rail (HSR) and air transport (AT) play crucial roles in socioeconomic development. With their continuous expansion in China, the overlap of HSR and AT networks has increased, providing travelers with more choices for intercity travel. Because fierce competition in the medium-to-long-distance segment affects the market share and transport capacity dispatching, the travel choice between HSR and AT has been of intense interest. This study utilized a unique fusion dataset collected from two separate organizations to conduct an empirical analysis of the travel mode choice behaviors of individuals when choosing between HSR and AT. A multinomial logit (MNL) model was adopted to examine the influences of key factors on passenger choice preferences. The results showed that the fitting effect of the MNL model was satisfactory, and the parameters were strongly interpretable. The McFadden Pseudo R 2 with a city-pair fixed effect in the MNL model increased by 17.3% compared with that without the city-pair fixed effect. All the related explanatory variables, including the trip distance by high-speed train, demography, ticket purchasing, and travel behavior characteristics, had significant positive effects on the passengers’ choice of AT, with trip distance having the largest effect. According to the parameter estimation, 1,160 km was the division for individual choice between HSR and AT. This study also compared the prediction accuracies of the MNL model and eight classical machine-learning models and found that random forest had the best performance. This study provides a new framework for analyzing travel choice modeling when choosing between HSR and AT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
benyu完成签到,获得积分10
1秒前
Pyc完成签到 ,获得积分10
1秒前
2秒前
3秒前
浮游应助给我点光环采纳,获得10
3秒前
chixueqi发布了新的文献求助10
4秒前
mmddlj完成签到 ,获得积分10
4秒前
5秒前
6秒前
gkw关闭了gkw文献求助
7秒前
小李呀发布了新的文献求助10
7秒前
8秒前
二十一日发布了新的文献求助10
9秒前
JamesPei应助gx采纳,获得10
13秒前
嗯哼哈哈发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
wudidafei完成签到 ,获得积分10
14秒前
15秒前
15秒前
15秒前
宋呵呵完成签到,获得积分10
19秒前
Mic应助欢呼的小玉采纳,获得10
20秒前
JamesPei应助欢呼的小玉采纳,获得10
20秒前
羊儿哥哥发布了新的文献求助10
20秒前
21秒前
Ll_l完成签到,获得积分10
21秒前
22秒前
Ken77发布了新的文献求助10
22秒前
24秒前
25秒前
搜集达人应助迷人书蝶采纳,获得10
26秒前
英姑应助漂亮夏兰采纳,获得10
27秒前
共享精神应助pp‘s采纳,获得10
27秒前
水薄荷完成签到,获得积分10
28秒前
香蕉觅云应助kaka采纳,获得30
28秒前
可爱的日记本完成签到 ,获得积分10
28秒前
那时花开发布了新的文献求助10
28秒前
打打应助闫栋采纳,获得10
28秒前
炑屿发布了新的文献求助10
28秒前
羊儿哥哥完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425342
求助须知:如何正确求助?哪些是违规求助? 4539424
关于积分的说明 14167973
捐赠科研通 4456912
什么是DOI,文献DOI怎么找? 2444339
邀请新用户注册赠送积分活动 1435316
关于科研通互助平台的介绍 1412740