Deep learning-based virtual staining, segmentation, and classification in label-free photoacoustic histology of human specimens

分割 计算机科学 人工智能 染色 数字化病理学 虚拟显微镜 深度学习 组织学 特征(语言学) 特征向量 模式识别(心理学) 病理 医学 语言学 哲学
作者
Chiho Yoon,Eunwoo Park,Sampa Misra,Jin Young Kim,Jin Woo Baik,Kwang Gi Kim,Chan Kwon Jung,Chulhong Kim
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41377-024-01554-7
摘要

Abstract In pathological diagnostics, histological images highlight the oncological features of excised specimens, but they require laborious and costly staining procedures. Despite recent innovations in label-free microscopy that simplify complex staining procedures, technical limitations and inadequate histological visualization are still problems in clinical settings. Here, we demonstrate an interconnected deep learning (DL)-based framework for performing automated virtual staining, segmentation, and classification in label-free photoacoustic histology (PAH) of human specimens. The framework comprises three components: (1) an explainable contrastive unpaired translation (E-CUT) method for virtual H&E (VHE) staining, (2) an U-net architecture for feature segmentation, and (3) a DL-based stepwise feature fusion method (StepFF) for classification. The framework demonstrates promising performance at each step of its application to human liver cancers. In virtual staining, the E-CUT preserves the morphological aspects of the cell nucleus and cytoplasm, making VHE images highly similar to real H&E ones. In segmentation, various features (e.g., the cell area, number of cells, and the distance between cell nuclei) have been successfully segmented in VHE images. Finally, by using deep feature vectors from PAH, VHE, and segmented images, StepFF has achieved a 98.00% classification accuracy, compared to the 94.80% accuracy of conventional PAH classification. In particular, StepFF’s classification reached a sensitivity of 100% based on the evaluation of three pathologists, demonstrating its applicability in real clinical settings. This series of DL methods for label-free PAH has great potential as a practical clinical strategy for digital pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喷火烈焰龙完成签到,获得积分10
1秒前
yuankaiming发布了新的文献求助10
1秒前
寒食应助qiu采纳,获得10
2秒前
香蕉觅云应助不安的夜柳采纳,获得10
2秒前
4秒前
技术的不能发表完成签到,获得积分10
4秒前
Baccano完成签到,获得积分10
5秒前
anny完成签到,获得积分10
6秒前
6秒前
乐多完成签到 ,获得积分10
6秒前
zzz完成签到,获得积分10
9秒前
安静的瑾瑜完成签到 ,获得积分10
9秒前
10秒前
maymay完成签到,获得积分20
12秒前
YcanGraduate发布了新的文献求助10
13秒前
777完成签到,获得积分10
13秒前
14秒前
16秒前
英俊的铭应助Wind采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得10
19秒前
19秒前
桐桐应助科研通管家采纳,获得10
19秒前
19秒前
lin应助科研通管家采纳,获得30
20秒前
劲秉应助科研通管家采纳,获得10
20秒前
20秒前
科目三应助科研通管家采纳,获得10
20秒前
搜集达人应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得10
20秒前
完美世界应助jessica采纳,获得10
20秒前
20秒前
21秒前
深情安青应助雨幕采纳,获得10
21秒前
MFNM完成签到,获得积分10
21秒前
方hh完成签到,获得积分10
22秒前
24秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266734
求助须知:如何正确求助?哪些是违规求助? 2906401
关于积分的说明 8337806
捐赠科研通 2576762
什么是DOI,文献DOI怎么找? 1400717
科研通“疑难数据库(出版商)”最低求助积分说明 654911
邀请新用户注册赠送积分活动 633788