Deep learning-based virtual staining, segmentation, and classification in label-free photoacoustic histology of human specimens

分割 计算机科学 人工智能 染色 数字化病理学 虚拟显微镜 深度学习 组织学 特征(语言学) 特征向量 模式识别(心理学) 病理 医学 语言学 哲学
作者
Chiho Yoon,Eunwoo Park,Sampa Misra,Jin Young Kim,Jin Woo Baik,Kwang Gi Kim,Chan Kwon Jung,Chulhong Kim
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1): 226-226 被引量:53
标识
DOI:10.1038/s41377-024-01554-7
摘要

Abstract In pathological diagnostics, histological images highlight the oncological features of excised specimens, but they require laborious and costly staining procedures. Despite recent innovations in label-free microscopy that simplify complex staining procedures, technical limitations and inadequate histological visualization are still problems in clinical settings. Here, we demonstrate an interconnected deep learning (DL)-based framework for performing automated virtual staining, segmentation, and classification in label-free photoacoustic histology (PAH) of human specimens. The framework comprises three components: (1) an explainable contrastive unpaired translation (E-CUT) method for virtual H&E (VHE) staining, (2) an U-net architecture for feature segmentation, and (3) a DL-based stepwise feature fusion method (StepFF) for classification. The framework demonstrates promising performance at each step of its application to human liver cancers. In virtual staining, the E-CUT preserves the morphological aspects of the cell nucleus and cytoplasm, making VHE images highly similar to real H&E ones. In segmentation, various features (e.g., the cell area, number of cells, and the distance between cell nuclei) have been successfully segmented in VHE images. Finally, by using deep feature vectors from PAH, VHE, and segmented images, StepFF has achieved a 98.00% classification accuracy, compared to the 94.80% accuracy of conventional PAH classification. In particular, StepFF’s classification reached a sensitivity of 100% based on the evaluation of three pathologists, demonstrating its applicability in real clinical settings. This series of DL methods for label-free PAH has great potential as a practical clinical strategy for digital pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的代容完成签到,获得积分10
1秒前
Sunny完成签到 ,获得积分10
2秒前
酸菜鱼火锅发布了新的文献求助150
4秒前
廉泽完成签到,获得积分10
5秒前
灵巧夏彤完成签到 ,获得积分10
5秒前
奋斗雅香完成签到 ,获得积分10
6秒前
无脚鸟完成签到,获得积分10
8秒前
快乐的故事完成签到,获得积分10
8秒前
丰富的白开水完成签到,获得积分10
9秒前
曹博完成签到,获得积分10
10秒前
10秒前
那时年少完成签到,获得积分10
11秒前
yurunxintian发布了新的文献求助30
11秒前
Jerry完成签到,获得积分10
11秒前
虚幻绿兰完成签到,获得积分10
12秒前
12秒前
锦慜完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
懵懂的钢笔完成签到 ,获得积分10
15秒前
回来完成签到,获得积分10
16秒前
shtatbf应助科研通管家采纳,获得10
17秒前
酸菜鱼火锅完成签到,获得积分10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
shtatbf应助科研通管家采纳,获得10
17秒前
chiazy完成签到,获得积分10
17秒前
安安应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
寒鸦应助科研通管家采纳,获得30
17秒前
shtatbf应助科研通管家采纳,获得10
17秒前
shtatbf应助科研通管家采纳,获得10
17秒前
shtatbf应助科研通管家采纳,获得10
17秒前
破茧而出的光芒完成签到,获得积分10
17秒前
魁梧的海秋完成签到,获得积分10
17秒前
橙子完成签到 ,获得积分10
17秒前
AURORA丶完成签到 ,获得积分10
18秒前
酷波er应助cuc采纳,获得10
18秒前
Cheryl完成签到,获得积分10
18秒前
Liziqi823完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664764
求助须知:如何正确求助?哪些是违规求助? 4869628
关于积分的说明 15108640
捐赠科研通 4823481
什么是DOI,文献DOI怎么找? 2582379
邀请新用户注册赠送积分活动 1536429
关于科研通互助平台的介绍 1494858