Deep learning-based virtual staining, segmentation, and classification in label-free photoacoustic histology of human specimens

分割 计算机科学 人工智能 染色 数字化病理学 虚拟显微镜 深度学习 组织学 特征(语言学) 特征向量 模式识别(心理学) 病理 医学 语言学 哲学
作者
Chiho Yoon,Eunwoo Park,Sampa Misra,Jin Young Kim,Jin Woo Baik,Kwang Gi Kim,Chan Kwon Jung,Chulhong Kim
出处
期刊:Light-Science & Applications [Springer Nature]
卷期号:13 (1) 被引量:6
标识
DOI:10.1038/s41377-024-01554-7
摘要

Abstract In pathological diagnostics, histological images highlight the oncological features of excised specimens, but they require laborious and costly staining procedures. Despite recent innovations in label-free microscopy that simplify complex staining procedures, technical limitations and inadequate histological visualization are still problems in clinical settings. Here, we demonstrate an interconnected deep learning (DL)-based framework for performing automated virtual staining, segmentation, and classification in label-free photoacoustic histology (PAH) of human specimens. The framework comprises three components: (1) an explainable contrastive unpaired translation (E-CUT) method for virtual H&E (VHE) staining, (2) an U-net architecture for feature segmentation, and (3) a DL-based stepwise feature fusion method (StepFF) for classification. The framework demonstrates promising performance at each step of its application to human liver cancers. In virtual staining, the E-CUT preserves the morphological aspects of the cell nucleus and cytoplasm, making VHE images highly similar to real H&E ones. In segmentation, various features (e.g., the cell area, number of cells, and the distance between cell nuclei) have been successfully segmented in VHE images. Finally, by using deep feature vectors from PAH, VHE, and segmented images, StepFF has achieved a 98.00% classification accuracy, compared to the 94.80% accuracy of conventional PAH classification. In particular, StepFF’s classification reached a sensitivity of 100% based on the evaluation of three pathologists, demonstrating its applicability in real clinical settings. This series of DL methods for label-free PAH has great potential as a practical clinical strategy for digital pathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡夜梦关注了科研通微信公众号
1秒前
单薄语山发布了新的文献求助10
2秒前
浮游应助小田儿采纳,获得10
2秒前
ttm发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助动听的半莲采纳,获得10
4秒前
万能图书馆应助哈哈采纳,获得10
5秒前
5秒前
肝不动的牛马完成签到,获得积分10
7秒前
Ilan发布了新的文献求助10
8秒前
花酒发布了新的文献求助10
8秒前
9秒前
小马甲应助xin采纳,获得10
10秒前
10秒前
10秒前
高贵的馒头完成签到,获得积分10
11秒前
不舍天真完成签到,获得积分10
11秒前
wentong完成签到,获得积分10
11秒前
星河清梦发布了新的文献求助30
14秒前
情怀应助zy采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
changping应助花酒采纳,获得10
16秒前
zhangxq关注了科研通微信公众号
17秒前
ding应助花样年华采纳,获得10
17秒前
17秒前
17秒前
tsuki完成签到 ,获得积分10
17秒前
xin完成签到,获得积分10
18秒前
gattina发布了新的文献求助10
18秒前
kiven完成签到 ,获得积分10
18秒前
Emper发布了新的文献求助10
21秒前
23秒前
江屿完成签到,获得积分20
23秒前
23秒前
24秒前
25秒前
丘比特应助科研通管家采纳,获得10
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5218912
求助须知:如何正确求助?哪些是违规求助? 4392767
关于积分的说明 13677175
捐赠科研通 4255477
什么是DOI,文献DOI怎么找? 2334980
邀请新用户注册赠送积分活动 1332572
关于科研通互助平台的介绍 1286834