Recently, bottom-up technologies, in particular the utilization of self-assembly of functional polymers to form nanostructures in solutions have been collecting attention. These technologies are being explored for various applications, especially for usage in therapeutics. One of the goals of such studies is to develop a drug delivery system (DDS) that delivers bioactive substances to specific targets within our body, eliciting the desired functionality. The authors have been developing "nanomachines" using biocompatible polymers to safely and efficiently deliver drugs mainly to tumors. The aim of this study is to utilize our expertise in designing a nanomachine to develop a cutting-edge nanomachine that can efficiently penetrate the blood-brain barrier (BBB) and deliver drugs to the brain parenchyma. Furthermore, leveraging this "nanomachine" technology, the authors are advancing the "Hayabusa Nanomachine," which can non-invasively collect and detect brain molecules, correlating them with various biological processes, ultimately leading to a better understanding of brain function and diseases. This paper also introduces the concept and ongoing efforts to the development of "Hayabusa Nanomachines," which have the potential to revolutionize existing approaches in this field.