SXAD: Shapely eXplainable AI-Based Anomaly Detection Using Log Data

计算机科学 可解释性 异常检测 黑匣子 人工智能 异常(物理) 机器学习 可信赖性 水准点(测量) 白盒子 数据挖掘 计算机安全 大地测量学 地理 物理 凝聚态物理
作者
Kashif Alam,Kashif Kifayat,Gabriel Avelino Sampedro,Vincent Karovič,Tariq Naeem
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 95659-95672
标识
DOI:10.1109/access.2024.3425472
摘要

Artificial Intelligence (AI) has made tremendous progress in anomaly detection. However, AI models work as a black-box, making it challenging to provide reasoning behind their judgments in a Log Anomaly Detection (LAD). To the rescue, Explainable Artificial Intelligence (XAI) improves system log analysis. It follows a white-box model for transparency, understandability, trustworthiness, and dependability of Machine Learning (ML) and Deep Learning (DL) Models. In addition, Shapely Additive Explanation (SHAP), added to system dynamics, makes informed judgments and adoptable proactive methods to optimize system functionality and reliability. Therefore, this paper proposed the Shapely eXplainable Anomaly Detection (SXAD) framework to identify different events (features) that impact the models' interpretability, trustworthiness, and explainability. The framework utilizes the Kernel SHAP approach, which is based on Shapley values principle, providing an innovative approach to event selection and identifying specific events causing abnormal behavior. This study addresses the LAD by transforming it from a black-box model into a white-box one, leveraging XAI to make it transparent, interpretable, explainable, and dependable. It utilizes benchmark data from the Hadoop Distributed File System (HDFS), organized using a Drain parser, and employs several ML models, such as Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB). These models achieve impressive accuracy rates of 99.99%, 99.85%, and 99.99%, respectively. Our contribution are novel because no earlier work has been done in the area of Log Anomaly Detection (LAD) with integration of XAI-SHAP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向绿竹发布了新的文献求助10
1秒前
1秒前
Puan发布了新的文献求助10
2秒前
风中采枫完成签到,获得积分10
3秒前
rrrrrrry发布了新的文献求助30
3秒前
甜甜玫瑰应助奔跑的小鹰采纳,获得10
4秒前
小月986发布了新的文献求助10
4秒前
5秒前
haku发布了新的文献求助10
6秒前
8秒前
武雨寒发布了新的文献求助10
8秒前
守望阳光1完成签到,获得积分10
9秒前
10秒前
10秒前
搜集达人应助chili采纳,获得10
11秒前
科研通AI2S应助炒栗子采纳,获得10
11秒前
11秒前
楚辞发布了新的文献求助30
11秒前
未来可期发布了新的文献求助10
12秒前
自觉的语海应助echasl73采纳,获得10
12秒前
13秒前
自信号厂应助snowskating采纳,获得30
14秒前
haku完成签到,获得积分10
15秒前
杜青发布了新的文献求助10
15秒前
17秒前
超级的鼠标完成签到,获得积分10
17秒前
zydd发布了新的文献求助10
18秒前
跨材料完成签到,获得积分10
18秒前
肖礼成完成签到,获得积分10
18秒前
小材人发布了新的文献求助10
19秒前
Albert完成签到,获得积分10
20秒前
21秒前
香蕉不二完成签到 ,获得积分10
21秒前
22秒前
23秒前
24秒前
25秒前
wangjialong完成签到,获得积分10
25秒前
思源应助椰子树采纳,获得10
26秒前
26秒前
高分求助中
Sustainability in ’Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
The ACS Guide to Scholarly Communication 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Handbook of the Mammals of the World – Volume 3: Primates 805
Ethnicities: Media, Health, and Coping 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3072205
求助须知:如何正确求助?哪些是违规求助? 2726027
关于积分的说明 7492250
捐赠科研通 2373536
什么是DOI,文献DOI怎么找? 1258633
科研通“疑难数据库(出版商)”最低求助积分说明 610333
版权声明 596952