A high-speed YOLO detection model for steel surface defects with the channel residual convolution and fusion-distribution

残余物 卷积(计算机科学) 特征(语言学) 骨干网 计算机科学 频道(广播) 模式识别(心理学) 人工智能 算法 比例(比率) 人工神经网络 物理 电信 语言学 哲学 量子力学
作者
Jianhang Huang,Xinliang Zhang,Lijie Jia,Yitian Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105410-105410 被引量:2
标识
DOI:10.1088/1361-6501/ad6281
摘要

Abstract Accurately and efficiently detecting steel surface defects is a critical step in steel manufacturing. However, the compromise between the detection speed and accuracy remains a major challenge, especially for steel surface defects with large variations in the scale. To address the issue, an improved you only look once (YOLO) based detection model is proposed through the reinforcement of its backbone and neck. Firstly, for the reduction of the redundant parameters and also the improvement of the characterization ability of the model, an effective channel residual structure is adopted to construct a channel residual convolution module and channel residual cross stage partial module as components of the backbone network, respectively. They realize the extraction of both the shallow feature and multi-scale feature simultaneously under a small number of convolutional parameters. Secondly, in the neck of YOLO, a fusion-distribution strategy is employed, which extracts and fuses multi-scale feature maps from the backbone network to provide global information, and then distributes global information into local features of different branches through an inject attention mechanism, thus enhancing the feature gap between different branches. Then, a model called CRFD-YOLO is derived for the steel surface defect detection and localization for the situations where both speed and accuracy are demanding. Finally, extensive experimental validations are conducted to evaluate the performance of CRFD-YOLO. The validation results indicate that CRFD-YOLO achieves a satisfactory detection performance with a mean average precision of 81.3% on the NEU-DET and 71.1% on the GC10-DET. Additionally, CRFD-YOLO achieves a speed of 161 frames per second, giving a great potential in real-time detection and localization tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Vitana完成签到,获得积分10
1秒前
英俊的铭应助冯123采纳,获得10
2秒前
fuguier发布了新的文献求助10
2秒前
爆米花应助JWKim采纳,获得10
3秒前
4秒前
4秒前
华仔应助十一采纳,获得10
6秒前
6秒前
周冬利发布了新的文献求助10
6秒前
kingwill应助coldspringhao采纳,获得20
7秒前
8秒前
9秒前
10秒前
10秒前
科研鸟发布了新的文献求助10
11秒前
安安完成签到 ,获得积分10
11秒前
陀思妥耶夫斯基完成签到 ,获得积分10
11秒前
11秒前
1580071102发布了新的文献求助10
11秒前
共享精神应助11采纳,获得10
11秒前
bkagyin应助wmmm采纳,获得10
11秒前
梨理栗发布了新的文献求助10
12秒前
12秒前
乐乐应助周冬利采纳,获得10
12秒前
JWKim完成签到,获得积分10
14秒前
15秒前
15秒前
16秒前
Carry发布了新的文献求助10
16秒前
yang发布了新的文献求助10
17秒前
JWKim发布了新的文献求助10
17秒前
秀丽的青发布了新的文献求助10
18秒前
Rondab应助梨理栗采纳,获得10
19秒前
qishiyy发布了新的文献求助10
19秒前
ice发布了新的文献求助10
20秒前
nickel关注了科研通微信公众号
20秒前
20秒前
21秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991967
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260597
捐赠科研通 3272377
什么是DOI,文献DOI怎么找? 1805789
邀请新用户注册赠送积分活动 882660
科研通“疑难数据库(出版商)”最低求助积分说明 809425