亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A high-speed YOLO detection model for steel surface defects with the channel residual convolution and fusion-distribution

残余物 卷积(计算机科学) 特征(语言学) 骨干网 计算机科学 频道(广播) 模式识别(心理学) 人工智能 算法 比例(比率) 人工神经网络 物理 电信 语言学 哲学 量子力学
作者
Jianhang Huang,Xinliang Zhang,Lijie Jia,Yitian Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad6281
摘要

Abstract Accurately and efficiently detecting steel surface defects is a critical step in steel manufacturing. However, the compromise between the detection speed and accuracy remains a major challenge, especially for steel surface defects with large variations in the scale. To address the issue, an improved YOLO based detection model is proposed through the reinforcement of its backbone and neck. Firstly, for the reduction of the redundant parameters and also the improvement of the characterization ability of the model, an effective channel residual structure is adopted to construct a channel residual convolution module (CRCM) and channel residual cross stage partial (CRCSP) module as components of the backbone network, respectively. They realize the extraction of both the shallow feature and multi-scale feature simultaneously under a small number of convolutional parameters. Secondly, in the neck of YOLO, a fusion-distribution (FD) strategy is employed, which extracts and fuses multi-scale feature maps from the backbone network to provide global information, and then distributes global information into local features of different branches through an inject attention mechanism, thus enhancing the feature gap between different branches. Then, a model called CRFD-YOLO is derived for the steel surface defect detection and localization for the situations where both speed and accuracy are demanding. Finally, extensive experimental validations are conducted to evaluate the performance of CRFD-YOLO. The validation results indicate that CRFD-YOLO achieves a satisfactory detection performance with a mean average precision of 81.3% on the NEU-DET and 71.1% on the GC10-DET. Additionally, CRFD-YOLO achieves a speed of 161 frames per second, giving a great potential in real-time detection and localization tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宣灵薇完成签到 ,获得积分0
1秒前
火火完成签到 ,获得积分10
50秒前
1分钟前
2分钟前
奋斗的杰发布了新的文献求助10
2分钟前
krajicek完成签到,获得积分10
2分钟前
2分钟前
TYJ10002发布了新的文献求助10
2分钟前
3分钟前
chiyudoubao发布了新的文献求助10
3分钟前
阳阳阳完成签到 ,获得积分10
4分钟前
4分钟前
搞钱发布了新的文献求助10
4分钟前
4分钟前
搞钱完成签到,获得积分10
4分钟前
lisasaguan完成签到,获得积分10
4分钟前
RED发布了新的文献求助10
4分钟前
4分钟前
634301059发布了新的文献求助20
4分钟前
4分钟前
yaoyao发布了新的文献求助10
4分钟前
乐乐应助yaoyao采纳,获得10
4分钟前
ktw完成签到,获得积分10
5分钟前
hahahan完成签到 ,获得积分10
5分钟前
跳跃的谷雪完成签到 ,获得积分10
6分钟前
9527z完成签到,获得积分10
7分钟前
LouieHuang完成签到,获得积分10
7分钟前
招水若离完成签到,获得积分10
7分钟前
可爱的函函应助奋斗的杰采纳,获得10
8分钟前
lkk183完成签到 ,获得积分10
8分钟前
9分钟前
yaoyao发布了新的文献求助10
9分钟前
9分钟前
奋斗的杰发布了新的文献求助10
9分钟前
科研通AI2S应助奋斗的杰采纳,获得10
10分钟前
CC完成签到 ,获得积分10
11分钟前
11分钟前
Nancy0818完成签到 ,获得积分10
11分钟前
不去明知山完成签到 ,获得积分10
11分钟前
kitty完成签到,获得积分10
12分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162323
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899707
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316528
科研通“疑难数据库(出版商)”最低求助积分说明 631365
版权声明 602142