A high-speed YOLO detection model for steel surface defects with the channel residual convolution and fusion-distribution

残余物 卷积(计算机科学) 特征(语言学) 骨干网 计算机科学 频道(广播) 模式识别(心理学) 人工智能 算法 比例(比率) 人工神经网络 物理 电信 语言学 量子力学 哲学
作者
Jianhang Huang,Xinliang Zhang,Lijie Jia,Yitian Zhou
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (10): 105410-105410 被引量:2
标识
DOI:10.1088/1361-6501/ad6281
摘要

Abstract Accurately and efficiently detecting steel surface defects is a critical step in steel manufacturing. However, the compromise between the detection speed and accuracy remains a major challenge, especially for steel surface defects with large variations in the scale. To address the issue, an improved you only look once (YOLO) based detection model is proposed through the reinforcement of its backbone and neck. Firstly, for the reduction of the redundant parameters and also the improvement of the characterization ability of the model, an effective channel residual structure is adopted to construct a channel residual convolution module and channel residual cross stage partial module as components of the backbone network, respectively. They realize the extraction of both the shallow feature and multi-scale feature simultaneously under a small number of convolutional parameters. Secondly, in the neck of YOLO, a fusion-distribution strategy is employed, which extracts and fuses multi-scale feature maps from the backbone network to provide global information, and then distributes global information into local features of different branches through an inject attention mechanism, thus enhancing the feature gap between different branches. Then, a model called CRFD-YOLO is derived for the steel surface defect detection and localization for the situations where both speed and accuracy are demanding. Finally, extensive experimental validations are conducted to evaluate the performance of CRFD-YOLO. The validation results indicate that CRFD-YOLO achieves a satisfactory detection performance with a mean average precision of 81.3% on the NEU-DET and 71.1% on the GC10-DET. Additionally, CRFD-YOLO achieves a speed of 161 frames per second, giving a great potential in real-time detection and localization tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dean应助科研通管家采纳,获得10
刚刚
好卉完成签到,获得积分10
刚刚
Dean应助科研通管家采纳,获得30
刚刚
量子星尘发布了新的文献求助10
刚刚
赘婿应助科研通管家采纳,获得20
刚刚
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
1秒前
CodeCraft应助开朗的之卉采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得30
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
1111应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助徐昊雯采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
MY应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
3秒前
上官若男应助南方周末采纳,获得10
4秒前
saberynn完成签到,获得积分10
4秒前
4秒前
nice1025完成签到,获得积分10
4秒前
4秒前
阿凡人完成签到,获得积分10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709