New Horizons of Model Informed Drug Development in Rare Diseases Drug Development

药物开发 临床试验 风险分析(工程) 监管科学 计算机科学 药品 数据科学 管理科学 人口 医学 医学物理学 重症监护医学 药理学 工程类 病理 环境卫生
作者
Amitava Mitra,Nessy Tania,Mariam A. Ahmed,Noha Rayad,Rajesh Krishna,Salwa Albusaysi,Rana B. Bakhaidar,Elizabeth Y. Shang,Maria Burian,Michelle Martin‐Pozo,Islam R. Younis
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:116 (6): 1398-1411 被引量:3
标识
DOI:10.1002/cpt.3366
摘要

Model‐informed approaches provide a quantitative framework to integrate all available nonclinical and clinical data, thus furnishing a totality of evidence approach to drug development and regulatory evaluation. Maximizing the use of all available data and information about the drug enables a more robust characterization of the risk–benefit profile and reduces uncertainty in both technical and regulatory success. This offers the potential to transform rare diseases drug development, where conducting large well‐controlled clinical trials is impractical and/or unethical due to a small patient population, a significant portion of which could be children. Additionally, the totality of evidence generated by model‐informed approaches can provide confirmatory evidence for regulatory approval without the need for additional clinical data. In the article, applications of novel quantitative approaches such as quantitative systems pharmacology, disease progression modeling, artificial intelligence, machine learning, modeling of real‐world data using model‐based meta‐analysis and strategies such as external control and patient‐reported outcomes as well as clinical trial simulations to optimize trials and sample collection are discussed. Specific case studies of these modeling approaches in rare diseases are provided to showcase applications in drug development and regulatory review. Finally, perspectives are shared on the future state of these modeling approaches in rare diseases drug development along with challenges and opportunities for incorporating such tools in the rational development of drug products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安详骁完成签到,获得积分10
1秒前
shenyu发布了新的文献求助10
1秒前
2秒前
yin发布了新的文献求助10
3秒前
希波克拉顶完成签到,获得积分10
3秒前
郑郑得富完成签到 ,获得积分10
3秒前
BocchiWu发布了新的文献求助80
4秒前
5秒前
6秒前
de完成签到,获得积分10
8秒前
9秒前
大模型应助欣喜石头采纳,获得10
9秒前
斯文败类应助久久采纳,获得10
9秒前
静1111完成签到,获得积分20
9秒前
10秒前
星辰大海应助asdfghjkl采纳,获得10
10秒前
hua应助cc采纳,获得30
11秒前
冷艳的嘉懿完成签到,获得积分10
12秒前
12秒前
12秒前
香蕉觅云应助赵银志采纳,获得10
12秒前
13秒前
13秒前
yrheong发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
偷乐发布了新的文献求助10
16秒前
16秒前
shifeng完成签到,获得积分20
16秒前
可与发布了新的文献求助10
16秒前
17秒前
17秒前
wwwwppp完成签到,获得积分10
17秒前
王文杰完成签到 ,获得积分10
18秒前
牛小蜗完成签到 ,获得积分0
18秒前
博弈春秋发布了新的文献求助10
20秒前
hancahngxiao发布了新的文献求助10
20秒前
久久发布了新的文献求助10
21秒前
tomato发布了新的文献求助10
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998235
求助须知:如何正确求助?哪些是违规求助? 3537729
关于积分的说明 11272361
捐赠科研通 3276854
什么是DOI,文献DOI怎么找? 1807154
邀请新用户注册赠送积分活动 883757
科研通“疑难数据库(出版商)”最低求助积分说明 810014