New Horizons of Model Informed Drug Development in Rare Diseases Drug Development

药物开发 临床试验 风险分析(工程) 监管科学 计算机科学 药品 数据科学 管理科学 人口 医学 医学物理学 重症监护医学 药理学 工程类 病理 环境卫生
作者
Amitava Mitra,Nessy Tania,Mariam A. Ahmed,Noha Rayad,Rajesh Krishna,Salwa Albusaysi,Rana B. Bakhaidar,Elizabeth Y. Shang,Maria Burian,Michelle Martin‐Pozo,Islam R. Younis
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
卷期号:116 (6): 1398-1411 被引量:8
标识
DOI:10.1002/cpt.3366
摘要

Model‐informed approaches provide a quantitative framework to integrate all available nonclinical and clinical data, thus furnishing a totality of evidence approach to drug development and regulatory evaluation. Maximizing the use of all available data and information about the drug enables a more robust characterization of the risk–benefit profile and reduces uncertainty in both technical and regulatory success. This offers the potential to transform rare diseases drug development, where conducting large well‐controlled clinical trials is impractical and/or unethical due to a small patient population, a significant portion of which could be children. Additionally, the totality of evidence generated by model‐informed approaches can provide confirmatory evidence for regulatory approval without the need for additional clinical data. In the article, applications of novel quantitative approaches such as quantitative systems pharmacology, disease progression modeling, artificial intelligence, machine learning, modeling of real‐world data using model‐based meta‐analysis and strategies such as external control and patient‐reported outcomes as well as clinical trial simulations to optimize trials and sample collection are discussed. Specific case studies of these modeling approaches in rare diseases are provided to showcase applications in drug development and regulatory review. Finally, perspectives are shared on the future state of these modeling approaches in rare diseases drug development along with challenges and opportunities for incorporating such tools in the rational development of drug products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
lsw完成签到,获得积分20
1秒前
yjc完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
111完成签到,获得积分10
2秒前
淡然的剑通完成签到 ,获得积分10
2秒前
2秒前
琪琪发布了新的文献求助10
2秒前
123完成签到,获得积分20
3秒前
JESSIE完成签到,获得积分10
3秒前
zz完成签到,获得积分10
3秒前
3秒前
未夕晴完成签到,获得积分10
4秒前
4秒前
4秒前
调皮语芙给调皮语芙的求助进行了留言
4秒前
HJJHJH发布了新的文献求助10
4秒前
李健应助mn略略略采纳,获得10
4秒前
4秒前
Lucas应助okghy采纳,获得10
4秒前
无花果应助辛勤云朵采纳,获得10
5秒前
星辰大海应助滑步小镰刀采纳,获得10
5秒前
5秒前
wxl发布了新的文献求助10
5秒前
123发布了新的文献求助10
6秒前
红墨发布了新的文献求助10
6秒前
无聊的映真完成签到 ,获得积分10
7秒前
科研通AI6应助自由元冬采纳,获得10
8秒前
大模型应助王铎采纳,获得20
8秒前
8秒前
8秒前
yjc发布了新的文献求助10
8秒前
北海未暖完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
Eon发布了新的文献求助10
8秒前
优雅盼海完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
A Practical Introduction to Regression Discontinuity Designs 2000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5659634
求助须知:如何正确求助?哪些是违规求助? 4829587
关于积分的说明 15087769
捐赠科研通 4818327
什么是DOI,文献DOI怎么找? 2578595
邀请新用户注册赠送积分活动 1533172
关于科研通互助平台的介绍 1491902