New Horizons of Model Informed Drug Development in Rare Diseases Drug Development

药物开发 临床试验 风险分析(工程) 监管科学 计算机科学 药品 数据科学 管理科学 人口 医学 医学物理学 重症监护医学 药理学 工程类 病理 环境卫生
作者
Amitava Mitra,Nessy Tania,Mariam A. Ahmed,Noha Rayad,Rajesh Krishna,Salwa Albusaysi,Rana B. Bakhaidar,Elizabeth Y. Shang,Maria Burian,Michelle D Martin-Pozo,Islam R. Younis
出处
期刊:Clinical Pharmacology & Therapeutics [Wiley]
标识
DOI:10.1002/cpt.3366
摘要

Model‐informed approaches provide a quantitative framework to integrate all available nonclinical and clinical data, thus furnishing a totality of evidence approach to drug development and regulatory evaluation. Maximizing the use of all available data and information about the drug enables a more robust characterization of the risk–benefit profile and reduces uncertainty in both technical and regulatory success. This offers the potential to transform rare diseases drug development, where conducting large well‐controlled clinical trials is impractical and/or unethical due to a small patient population, a significant portion of which could be children. Additionally, the totality of evidence generated by model‐informed approaches can provide confirmatory evidence for regulatory approval without the need for additional clinical data. In the article, applications of novel quantitative approaches such as quantitative systems pharmacology, disease progression modeling, artificial intelligence, machine learning, modeling of real‐world data using model‐based meta‐analysis and strategies such as external control and patient‐reported outcomes as well as clinical trial simulations to optimize trials and sample collection are discussed. Specific case studies of these modeling approaches in rare diseases are provided to showcase applications in drug development and regulatory review. Finally, perspectives are shared on the future state of these modeling approaches in rare diseases drug development along with challenges and opportunities for incorporating such tools in the rational development of drug products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
2秒前
亮皮鱼老大完成签到,获得积分10
3秒前
设计狂魔发布了新的文献求助10
4秒前
半圆亻完成签到 ,获得积分10
4秒前
chrysophoron完成签到,获得积分10
4秒前
8秒前
jasar完成签到,获得积分20
9秒前
清爽玉米完成签到,获得积分10
9秒前
xuyan发布了新的文献求助10
9秒前
11秒前
鳗鱼又槐发布了新的文献求助10
13秒前
搜集达人应助精明的可仁采纳,获得20
14秒前
科研通AI2S应助圣托里尼采纳,获得10
14秒前
15秒前
亚威完成签到,获得积分10
16秒前
Explorer3号完成签到,获得积分10
16秒前
奔奔发布了新的文献求助10
16秒前
设计狂魔完成签到,获得积分10
17秒前
17秒前
18秒前
动听皮带完成签到,获得积分20
18秒前
SciGPT应助李振华采纳,获得10
19秒前
Vicky完成签到 ,获得积分10
19秒前
ronnie147完成签到 ,获得积分10
20秒前
NexusExplorer应助sue采纳,获得50
21秒前
薰硝壤应助冬月初二采纳,获得10
24秒前
缥缈丑关注了科研通微信公众号
24秒前
Ava应助wuliumu采纳,获得10
26秒前
27秒前
morris完成签到,获得积分10
30秒前
MrHwc完成签到,获得积分10
31秒前
31秒前
脑洞疼应助鳗鱼又槐采纳,获得10
33秒前
33秒前
33秒前
李承恩完成签到,获得积分10
33秒前
34秒前
刘青完成签到,获得积分10
35秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141210
求助须知:如何正确求助?哪些是违规求助? 2792192
关于积分的说明 7801885
捐赠科研通 2448394
什么是DOI,文献DOI怎么找? 1302521
科研通“疑难数据库(出版商)”最低求助积分说明 626638
版权声明 601237